

OUT LINES

INTRODUCTION DEFINITION- EXAMPLES THEOREMS ADDITIONAL INFORMATION SUMMARY

PREPARED BY

S.Lt / Dr.D.CH.PAPARAO. M.Sc, Ph.D, PGDCA Head, Dept. of Mathematics S.K.B.R.COLLEGE, AMALAPURAM East Godavari Dist. Andhra Pradesh Mail ID: dchp876@gmail.com

INTRODUCTION

In Group Theory, a branch of Abstract Algebra, a Subgroup is a structure-preserving function in Groups.

COMPLEX:

Let G be a group and $H \neq \phi \subseteq G$ then H is called the Complex of G.

Any non-empty subset of a group G is called a complex.

Example:

1. H = $\{1\}$ is a complex of a multiplicate group G = $\{1,-1\}$

2. The set of even integers is a complex of (Z,+).

MULTIPLICATION OF COMPLEXES

Let H and K are two complexes of a group G then

the product HK is defined as

$$\mathbf{H}\mathbf{K} = \left\{ \mathbf{h}\mathbf{k} \ / \ \mathbf{h} \in \mathbf{H}, \ \mathbf{k} \in \mathbf{K} \right\}$$

Note: 1. HK is also a complex of G.

2. Multiplication of Complexes is Associative.

i.e., H(KL) = (HK)L

INVERSE OF A COMPLEX

Let H be a complex of G, then the inverse of H is defined as $\mathbf{H}^{-1} = \left\{ \mathbf{h}^{-1} / \mathbf{h} \in \mathbf{H} \right\}$

i.e., $\mathbf{h} \in \mathbf{H} \Longrightarrow \mathbf{h}^{-1} \in \mathbf{H}^{-1}$

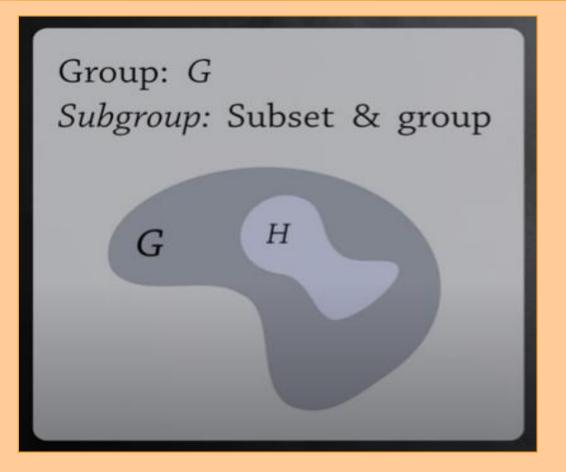
NOTE: We know that $(\mathbf{H}\mathbf{K})^{-1} = \mathbf{K}^{-1}\mathbf{H}^{-1}$ and $(\mathbf{H}^{-1})^{-1} = \mathbf{H}$

Let (G, \cdot) be a group and $H \subseteq G$. H is said to be a Subgroup of G if H is itself a group w.r.t the binary operation '.' of G.

EXAMPLES

1. (Z,+) and (C,+) are two groups w.r.t addition and $Z \subseteq C \implies (Z,+)$ is a subgroup of (C,+). 2. (Q,+) and (R,+) are two groups w.r.t addition and $Q \subseteq R \implies (Q,+)$ is a subgroup of (R,+). 3. The set of Even integers is a subgroup of (Z,+).

Relation between Group and Subgroup



Let G be group and H is a subgroup of G \Rightarrow 1. H is a subset of G. 2. H is a group.

IMPROPER (OR) TRIVIAL SUBGROUPS

Let G be a group and $e \in G$. Then the sets $\{e\}$ and G are Subgroups of G. These two Subgroups are called **Improper Subgroups of G.** All other subgroups other than {e}and G are called **PROPER or Non-Trivial Subgroups of G.** EXAMPLE We know that $\mathbf{G} = \{1, -1, \mathbf{i}, -\mathbf{i}\}$ is a multiplicative Group. $H_1 = \{1\}, H_2 = \{1, -1\}$ and $H_3 = G = \{1, -1, i, -i\}$ are three Subgroups of G. (\because Identity element e = 1) Clearly H_1 and H_3 are improper subgroups of G and \mathbf{H}_{2} is a proper subgroup of **G**.

Example for a Subgroup

Let $m \in \mathbb{Z}$ and $m\mathbb{Z}=\{ma / a \in \mathbb{Z}\}\$ then the set $m\mathbb{Z}$ is a Subgroup of a group $(\mathbb{Z},+)$. Also $m\mathbb{Z}$ is cyclic Subgroup of $(\mathbb{Z},+)$ generated by m. $\therefore m\mathbb{Z}=\{ma / a \in \mathbb{Z}\}=\langle m \rangle$

Example for a Subgroup

Let X be a non empty subset and S(X) be the set of all bijective mappings of X onto itself under the composition of mappings. $\therefore S(X) = \{f / f \text{ is a bijection on } X\}$ For any $x_0 \in X$, we define $Hx_0 = \{f \in S(X) / f(x_0) = x_0\}$ then Hx_0 is a subgroup of (S(X), 0).

Q. What is the relation between between **Complex and Subgroup ? A. Eevery Subgroup is a Complex, but** every Complex need not be a Subgroup. Theorem : If H is a subgroup of a group G then HH = H **Proof :** Let $x \in HH \implies x = h_1h_2$, where $h_1 \in H, h_2 \in H$ $\therefore \mathbf{h}_1 \in \mathbf{H}, \mathbf{h}_2 \in \mathbf{H} \Rightarrow \mathbf{h}_1 \mathbf{h}_2 \in \mathbf{H} \Rightarrow \mathbf{x} \in \mathbf{H}$ $\therefore \mathbf{x} \in \mathbf{H}\mathbf{H} \implies \mathbf{x} \in \mathbf{H} \implies \mathbf{H}\mathbf{H} \subset \mathbf{H} \longrightarrow (1)$ Again $h \in H, e \in H \implies he \in HH \implies h \in HH$ $\therefore \mathbf{h} \in \mathbf{H} \implies \mathbf{h} \in \mathbf{H}\mathbf{H} \implies \mathbf{H} \subset \mathbf{H}\mathbf{H} \longrightarrow (2)$ **From**(1) & (2), we get **HH** \subseteq **H** & **H** \subset **HH** \Rightarrow **HH** = **H** Hence proved

If H is a subgroup of a group G then $H^{-1} = H$ **Proof** : Let G be a group and $H \subseteq G$. **Part – I : Suppose H is a subgroup of G** Let $\mathbf{x} \in \mathbf{H}^{-1} \Longrightarrow \mathbf{x} = \mathbf{h}^{-1}$, where $\mathbf{h} \in \mathbf{H}$ $\therefore \mathbf{h} \in \mathbf{H} \implies \mathbf{h}^{-1} \in \mathbf{H}(\mathbf{Inverse}) \Longrightarrow \mathbf{x} \in \mathbf{H}$ $\therefore \mathbf{x} \in \mathbf{H}^{-1} \Longrightarrow \mathbf{x} \in \mathbf{H} \quad \Rightarrow \mathbf{H}^{-1} \subseteq \mathbf{H} \to (1)$ **Part** – **II** : **Suppose** $\mathbf{H}^{-1} \subseteq \mathbf{H}$ Let $\mathbf{h} \in \mathbf{H} \implies \mathbf{h}^{-1} \in \mathbf{H} \implies (\mathbf{h}^{-1})^{-1} \in \mathbf{H}^{-1}$ \Rightarrow **h** \in **H**⁻¹ $\therefore \mathbf{h} \in \mathbf{H} \Longrightarrow \mathbf{h} \in \mathbf{H}^{-1} \quad \Rightarrow \mathbf{H}^{-1} \subseteq \mathbf{H} \to (2)$ **From** (1) & (2) we get $\mathbf{H}^{-1} = \mathbf{H}$ Hence proved

Note : The converse of the above theorem need not be true. i.e., If $H = H^{-1}$ then H need not be a Subgroup of a group G. **Consider a set H** = $\{1\}$ and a multiplicate group G = $\{1, -1\}$ Clearly $H = H^{-1} = \{1\}$ and H is a Subgroup of G. :: (e = 1)Again Consider a set $H = \{-1\}$ and a multiplicate group $G = \{1, -1\}$ Clearly $H = H^{-1} = \{-1\}$, but H is a not a Subgroup of G as **H** has not a multiplicative identity e = 1. \because $H^{-1} = \{(-1)^{-1} = -1\}$

Let H be a Subgroup of a group G.<u>The identity</u> element of H is same as the identity element of G. A nonempty subset H of a group G is a subgroup of G iff $a, b \in H \Rightarrow ab^{-1} \in H$ **Proof:** Suppose H be a Subgroup of a group G and e is the identity element of G. Let $\mathbf{a}, \mathbf{b} \in \mathbf{H} \implies \mathbf{a}^{-1}, \mathbf{b}^{-1} \in \mathbf{H} \qquad \because$ inverse axiom For $a \in H$, $b^{-1} \in H \Rightarrow ab^{-1} \in H$: identity axiom \therefore **a**, **b** \in **H** \Rightarrow **ab**⁻¹ \in **H** Conversely suppose that $a, b \in H \Rightarrow ab^{-1} \in H \rightarrow (1)$ 1. Identity axiom: Let $\mathbf{a} \in \mathbf{H} \Rightarrow \mathbf{a} \in \mathbf{G} \left[\because \mathbf{a} \mathbf{a}^{-1} = \mathbf{a}^{-1} \mathbf{a} = \mathbf{e} \right]$ For $\mathbf{a}, \mathbf{a} \in \mathbf{H} \Rightarrow \mathbf{a}\mathbf{a}^{-1} \in \mathbf{H} \Rightarrow \mathbf{e} \in \mathbf{H}$ | using (1) where e is the identity element in H.

2. <u>Inverse axiom</u>: Let $a \in H$, $e \in h$: ae = ea = aFor $\mathbf{e}, \mathbf{a} \in \mathbf{H} \Rightarrow \mathbf{ea}^{-1} \in \mathbf{H} \Rightarrow \mathbf{a}^{-1} \in \mathbf{H}$ using (1) $\therefore \mathbf{a} \in \mathbf{H} \Rightarrow \mathbf{a}^{-1} \in \mathbf{H}$ **3.** Associative axiom: Let a, b, $c \in H \implies a, b, c \in G$ \Rightarrow a(bc) = (ab)c \therefore H \subseteq G & G is a group. \therefore '.' is associative in H. **4.** Closure axiom: Let $a, b \in H \implies a^{-1}, b^{-1} \in H$ $\therefore \mathbf{a} \in \mathbf{H}, \ \mathbf{b}^{-1} \in \mathbf{H} \quad \Rightarrow \mathbf{a} \left(\mathbf{b}^{-1} \right)^{-1} \in \mathbf{H} \quad \Rightarrow \mathbf{a} \mathbf{b} \in \mathbf{H}$ \therefore '.' is a b inary operation in H \therefore H is group and $H \subseteq G \implies H$ is a subgroup of G. **Hence proved**

Necessary and Sufficient Condtion for a Subgroup Statement: A nonempty complex H of a group G is a subgroup of G if and only if (i) $\mathbf{a}, \mathbf{b} \in \mathbf{H} \Rightarrow \mathbf{ab} \in \mathbf{H}$, (ii) $\mathbf{a} \in \mathbf{H} \Rightarrow \mathbf{a}^{-1} \in \mathbf{H}$ **Proof: Suppose H be a Subgroup of a group G** \Rightarrow H is itself a group w.r.t the operation of G Let $a, b \in H \implies ab \in H \quad \because \text{ Closure axiom}$ For $\mathbf{a} \in \mathbf{H} \Rightarrow \mathbf{a}^{-1} \in \mathbf{H}$ ∵ inverse axiom **Conversely suppose that** $\mathbf{a}, \mathbf{b} \in \mathbf{H} \Rightarrow \mathbf{ab} \in \mathbf{H} \rightarrow (1) \text{ and } \mathbf{a} \in \mathbf{H} \Rightarrow \mathbf{a}^{-1} \in \mathbf{H} \rightarrow (2)$ **1.** <u>Closure axiom:</u> Let $a, b \in H \Rightarrow ab \in H$ using (1) **2.** Associative axiom: Let $a,b,c \in H \Rightarrow a,b,c \in G$ $\Rightarrow \mathbf{a}(\mathbf{bc}) = (\mathbf{ab})\mathbf{c}$ $\therefore \mathbf{G}$ is a group & $\mathbf{H} \subseteq \mathbf{G}$

3. Existence of inverse: Let $a \in H \Rightarrow a^{-1} \in H$ (:: using 2) : Every element in H having multiplicative inverse in H. 4. Identity axiom: Let $a, b \in H \Rightarrow a^{-1}, b^{-1} \in H$ (:: using 2) For a, $\mathbf{a}^{-1} \in \mathbf{H} \implies \mathbf{a}\mathbf{a}^{-1} \in \mathbf{H} \implies \mathbf{e} \in \mathbf{H} (:: \mathbf{a}\mathbf{a}^{-1} = \mathbf{a}^{-1}\mathbf{a} = \mathbf{e})$ \Rightarrow 'e' is a the identity element in H. \therefore (H, .) is a group and H \subseteq G \Rightarrow H is a Subgroup of G. Hence proved

NOTE:

1. Let H be a complex of an multiplicative group (G, .). Then H is a Subgroup of (G, .) iff $a, b \in H \Rightarrow ab^{-1} \in H$. 2. Let H be a complex of an additive group (G, +). Then H is a Subgroup of (G, +) iff $a, b \in H \Rightarrow a - b \in H$. S.T mZ is a subgroup of Z, where m is fixed + ve integer. Sol: Let Z be the set of all integers and m is fixed + ve integer. Let x, $y \in mZ$, where $mZ = \{ma / a \in Z\}$ \Rightarrow x = ma and y = mb for a, b \in Z Now $\mathbf{x} - \mathbf{y} = \mathbf{ma} - \mathbf{mb} = \mathbf{m}(\mathbf{a} - \mathbf{b}) = \mathbf{ma}^1 \in \mathbf{mZ}$ $\because \mathbf{a}^1 = (\mathbf{a} - \mathbf{b}) \in \mathbf{Z}$ \Rightarrow mZ is a subgroup of (Z,+). Note: In general 3Z, 4Z, 5Z.....etc are subgroups of (Z, +). **Example Problem:**

Prove that the set of multiples of 3 is a subgroup

of the group of integers under addition.

Here, the set of multiples of $3 = 3Z = \{3a | a \in Z\}$

Union of two subgroups need not be a Subgroup.

We know that 2Z and 3Z are two Subgroups of (Z,+). $\therefore 2Z = \{\dots, -4, -2, 0, 2, 4, \dots\} \& 3Z = \{\dots, -6, -3, 0, 3, 6, \dots\}$ \Rightarrow Let $H = 2Z \cup 3Z = \{\dots, -6, -4, -3, -2, 0, 2, 3, 4, 6, \dots\}$ Let $2, 3 \in H \Rightarrow 2 - 3 = -1 \notin H \Rightarrow H$ is not a subgroup of (Z,+).

Intersection of two subgroups is also a Subgroup.

Give an example of a nonabelian group

Example: The $G = \{r_0, r_1, r_2, f_1, f_2, f_3\}$ of all symmetrices of an equilateral triangle forms a <u>nonabelian group</u> w.r.t to the composition of mappings 'o' on G.

1. Can an abelian group have a nonabelian Subgroup? Ans: $NO \Rightarrow$ Every subgroup of an abelian is abelian. **2.** Can a nonabelian group have an abelian Subgroup? **Ans: YES Example-1:** The set {e} is a subgroup of a nonabelian group G, where e is the identity element of G. **Example-2:** Let G be a nonabelian group and $x \in G$, $x \neq e$. **Then** $\langle \mathbf{x} \rangle$ is an abelian subgroup of G. For example, S₃ is a nonabelian group such that only the cyclic subgroups are abelian. where S_3 is the permutation group on 3 symbols. **3.** Can a nonabelian group have a nonabelian Subgroup? **Ans: YES** Note: The dihedral groups are examples of non – abelian groups

Every subgroup of an abelian group is abelianLet G be an abelian group and H is a subgroup of G.We prove that H is an abelian groupLet a, b \in H \Rightarrow a, b \in G (\because H \subseteq G) \Rightarrow ab = ba (\because G is abelian group) \therefore H is a subgroup of G.

Find all subgroups of the group $(\mathbf{G} = \{0,1,2,3,4,5\}, \oplus_6)$ $\mathbf{H}_1 = \{0\}, \quad \mathbf{H}_2 = \{0,3\}, \mathbf{H}_3 = \{0,2,4\}, \mathbf{H}_4 = \{0,1,2,3,4,5\} = \mathbf{G}$ Here \mathbf{H}_1 and \mathbf{H}_4 are improper subgroups and \mathbf{H}_2 and \mathbf{H}_3 are proper subgroups of \mathbf{G} .

Intersection of two subgroups of a group is also a subgroup

Proof: Let H and K are two subgroups of a group G. **Claim:** We prove that $\mathbf{H} \cap \mathbf{K}$ is a subgroup of \mathbf{G} Let $a, b \in H \cap K \implies a, b \in H$ and $a, b \in K$ For $a, b \in H \implies ab^{-1} \in H \implies H$ is a subgroup of G For $a, b \in K \implies ab^{-1} \in K \quad \because K$ is a subgroup of G Using above, $ab^{-1} \in H$ and $ab^{-1} \in K \implies ab^{-1} \in H \cap K$ \therefore **H** \cap **K** is a subgroup of **G**

NOTE:1. H is a subgroup of a group G iff a, b ∈ H ⇒ ab⁻¹ ∈ H
2. The intersection of any family of a subgroups of a group G is also a subgroup of G.

Let H and K be two subgroups of a group G. Then prove that $H \cup K$ is a subgroup of G iff $H \subseteq K$ or $K \subseteq H$

Proof: Let H and K be two subgroups of a group G. <u>PART-I</u>: Suppose that $H \cup K$ is a subgroup of G We prove that $H \subseteq K$ or $K \subseteq H$

- If possible suppose that $H \not\subseteq K$ and $K \not\subseteq H$
- \because **H** \leq **K**, then there exists $a \in H$ and $a \notin K \rightarrow (1)$
- $\therefore \mathbf{K} \not\subseteq \mathbf{H}, \text{then there exists } \mathbf{b} \in \mathbf{K} \text{ and } \mathbf{b} \notin \mathbf{H} \rightarrow (2)$ From (1) & (2), $\mathbf{a} \in \mathbf{H} \Rightarrow \mathbf{a} \in \mathbf{H} \cup \mathbf{K}, \mathbf{b} \in \mathbf{K} \Rightarrow \mathbf{b} \in \mathbf{H} \cup \mathbf{K}$ $\therefore \mathbf{a} \in \mathbf{H} \cup \mathbf{K}, \mathbf{b} \in \mathbf{H} \cup \mathbf{K} \Rightarrow \mathbf{ab} \in \mathbf{H} \cup \mathbf{K} \quad (\text{Closure})$ $\Rightarrow \mathbf{ab} \in \mathbf{H} \text{ or } \mathbf{ab} \in \mathbf{K} \text{ or } \mathbf{ab} \in \mathbf{H} \cap \mathbf{K}$

Case -I : Suppose that $ab \in H$ $\therefore \mathbf{a} \in \mathbf{H} \Rightarrow \mathbf{a}^{-1} \in \mathbf{H} \text{ and } \mathbf{ab} \in \mathbf{H} \Rightarrow \mathbf{a}^{-1} (\mathbf{ab}) \in \mathbf{H} \Rightarrow \mathbf{b} \in \mathbf{H}$ It is contradiction (:: from (2), $\mathbf{b} \notin \mathbf{H}$) \therefore Our supposition ab \in H is wrong. i.e., ab \notin H \rightarrow (3) **Case -II :** Suppose that $ab \in K$ $\because \mathbf{b} \in \mathbf{K} \Rightarrow \mathbf{b}^{-1} \in \mathbf{K} \text{ and } \mathbf{ab} \in \mathbf{K} \Rightarrow (\mathbf{ab})\mathbf{b}^{-1} \in \mathbf{K} \Rightarrow \mathbf{a} \in \mathbf{K}$ It is contradiction (\because from (1), $a \notin K$) \therefore Our supposition $ab \in K$ is wrong. i.e., $ab \notin K \rightarrow (4)$ From (3) & (4), ab \notin H, ab \notin K \Rightarrow ab \notin H \cup K (Closure failed) Hence our supposition $H \not\subset K$ and $K \not\subset H$ is false. \therefore H \subset K or K \subset H. **PART** – **II** : Suppose that $\mathbf{H} \subset \mathbf{K}$ or $\mathbf{K} \subset \mathbf{H}$. $:: \mathbf{H} \subseteq \mathbf{K} \implies \mathbf{K} = \mathbf{H} \cup \mathbf{K} \implies \mathbf{H} \cup \mathbf{K}$ is a subgroup of **G**. $:: \mathbf{K} \subset \mathbf{H} \implies \mathbf{H} = \mathbf{H} \cup \mathbf{K} \implies \mathbf{H} \cup \mathbf{K}$ is a subgroup of **G**. **Hence proved**

Let H and K be two subgroups of a group G. Then prove that HK is a subgroup of G iff HK = KHProof: Let H and K be two subgroups of a group G. \therefore H is a subgroup of $G \Rightarrow H = H^{-1}$ and $HH^{-1} = H \rightarrow (1)$ \therefore K is a subgroup of $G \Rightarrow K = K^{-1}$ and $KK^{-1} = K \rightarrow (2)$ PART – I : Suppose HK is a subgroup of G.

 \because HK is a subgroup of $\mathbf{G} \Rightarrow (\mathbf{HK})^{-1} = \mathbf{HK}$

 $\Rightarrow KH = HK$ PART-II: Suppose HK=KH
Now (HK)(HK)⁻¹ = (HK)(K⁻¹H⁻¹) = H(KK⁻¹)H⁻¹ = (HK)H⁻¹

 \Rightarrow ($\mathbf{K}^{-1}\mathbf{H}^{-1}$) = $\mathbf{H}\mathbf{K}$

 $= (\mathbf{K}\mathbf{H})\mathbf{H}^{-1} = \mathbf{K}(\mathbf{H}\mathbf{H}^{-1}) = \mathbf{K}\mathbf{H} = \mathbf{H}\mathbf{K}$

: HK is a subgroup of G.

If H is a subgroup of a group G then $HH^{-1} \subseteq H$

Proof : Let G be a group and $H \subset G$. Suppose H is a subgroup of G **Claim :** We prove that $HH^{-1} \subset H$ Let $\mathbf{x} \in \mathbf{H}\mathbf{H}^{-1} \Longrightarrow \mathbf{x} = \mathbf{a}\mathbf{b}^{-1}$, where $\mathbf{a} \in \mathbf{H}, \mathbf{b}^{-1} \in \mathbf{H}^{-1}$ $:: \mathbf{b}^{-1} \in \mathbf{H}^{-1} \Rightarrow \mathbf{b} \in \mathbf{H} \Rightarrow \mathbf{b}^{-1} \in \mathbf{H} (:: \mathbf{H} \text{ is a subgroup})$ $\therefore \mathbf{a} \in \mathbf{H}, \ \mathbf{b}^{-1} \in \mathbf{H} \quad \Rightarrow \mathbf{a}\mathbf{b}^{-1} \in \mathbf{H} \quad \Rightarrow \mathbf{x} \in \mathbf{H}$ $\therefore \mathbf{X} \in \mathbf{H}\mathbf{H}^{-1} \Longrightarrow \mathbf{X} \in \mathbf{H} \qquad \Rightarrow \mathbf{H}\mathbf{H}^{-1} \subset \mathbf{H}$ **Hence proved**

ADDITIONAL INFORMATION

The following web links are very useful to develop the subject skills and learning the problem solving techniques in easy manner.

https://web.ma.utexas.edu/users/rodin/343K/Subgroups.pdf

http://www.maths.lth.se/matematiklth/personal/ssilvest/Al gebraVT2011/ Lecture09Silvestrov.pdf

https://www.youtube.com/watch?v=TJAQNIGvfjE

https://www.youtube.com/watch?v=dpj2dVOscl0

http://web.math.princeton.edu/swim/SWIM%202010/SWIM%202 010%20Course%20II%20Lecture%20Notes%206%20of%207.pdf

https://www.youtube.com/watch?v=aWxznOOMPsk

I have concluded that PPT presentation is very useful in establishing objectives, Basic Concepts and illustrating concrete examples.

I hope that utilizing all of these methods through PPT Slides helps to engage students with different types of learning styles.

I have added definitions, example problems and theorems of the chapter Subgroups in brief and short methods.

S.K.B.R.COLLEGE AMALAPURAM

