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“If you are not certain where you are

going, you may very well end up

somewhere else and not even know i




INTRODUCTION

Group theory is the study of algebraic structures called
groups. This introduction will rely heavily on set theory
and modular arithmetic's as well. Later on it will require an

understanding of mathematical induction, functions,

bisections, and partitions.

Group Theory can be viewed as the mathematical
deals with symmetry, where symmetry ha

meaning.



BINARY OPERATION

Let A be a non empty set. Any mapping 3k from
A X A into A is known as a Binary Operation.

If * Is a binary operation in A then
vV a,be A = a=*xb isaunique element in A.

Let a,be A = (a,b)e AxA

The image of *(a,b) is written as a=*Db
*(a,b)=a=b

Example :

Let C be the set of Complex numbers

Let2, 3eC=2+3=5eC & 23=6C
.+ and -« are binary operations in C.




ALGEBRAIC STRUCTURE ( A. S)

Let A be anon empty set and B is the set of all binary
operations on A. Then (A, B) is known as A.S.

If = Is a binary operation on A then
(A,*) is an Algebraic Strecture.
Example: We know that

+ and - are two binary operations in R
then (R,+) and (R, ) are Algebraic Structures.

Moreover (N,+),(N, ¢),(Z,+).(Z, *),(Q,+
(C,+),(C, ) are all algebraic structur




SEMIGROUP

Let S be a non empty set and =k is the binary
operation on S. Then the algebraic structure (S, k)
is said to be a Semi Group if

ax(bxc)=(a*b)*c Va,b,ceS
—> * IS an assoclative binary operationon S.

~. (S,*) is a Semigroup.

Example :1. (N, +) is a Semigroup.

2.(Z,+) is a Semigrou




IDENTITY ELEMENT

Let (S, :k ) be a Semi Group and a, b belongs to S.
An element e < S is said to be Left Identity of S
if exa=aVvaeS = elsthe Left Identity element in S
Similarly

axe=aVaeS = elsthe Right Identity element irfl

‘If ax*e=a=e*aVaeS = elsthe ldentity Element in S‘

In general,
If a+e=a=e+aVvaeS
= e Is the Additive Identity element in S

Example : 0 Is the additive identity element |




If a.e=a=e¢a VaeS
= 'e'1s the Multiplicative Identity In S

Example:
'1" is the Multiplicative Identity in the Semi Group (C, +).

NOTE: If (S, *) is the Semi Group with Identity e then
‘" Is the unigue element in S.

Let e and e’ are two ldentity Ele

in a Semigroup (S, *),then w




MONOID
Let (s, x)be a Semigroup with identity
element e then S is called the Monoid.

Examples:
1.(Z,+) is a Monoid, 0 is the identity element.

2.(Q, +) is a Monoid, 1 is the identity element.
3.(N, +) is not a Monoid, where N = {1,
. additive identity element 0 do

Give an example of Semigroup

Example: (N, +)isaS



INVERSE ELEMENT

Let (S, =« )be a Semigroup with identity element e.

AN element a S i1s said to be left inverse
IT there exists an element b € S such that
bxa=e = bis the left inverse of a.

An element a €S is said to be right inverse

If there exists an element ¢c € S such that
axc=e = cis the right inverse of

‘a’ is invertible element in S if a is both left and ri

axb=e=b=xa= a Is invertiable
and the Inverse of 'a" Is unique.




THEOREM

Let (S, =¥ be a Semigroup with identity element e
and a € S.If b is the left inverse and c is the right
iInverse of athen b = c.

Let (S,*) be a semigroup and e is identity in S.
Leta, b,ceS
b is the left inverseofa = b=*a=e — (1)

-~ ¢ is the right inverse of a = a*c=e —(2)
Claim : we prove that b =c

- e Is the identity element in S = a*e =
Now b=bxe=Db=(a*xc)=(b=*a)*
Hence prove




GROUP

Let G be a nonempty set and =¥<Is a binary operation on

G. The algebraic structure(G *) IS said to be group if
G satisfies the following three axioms

1. Associative
a*(b=c) :(a*b)*c VvV a,b,ceG
2. Existence of i1dentity

axb=Db=+*xa=a — b =-e iIs the identity Iin G.
l.e., a*e=e*a=a — e Is the identity In
3. Existence of Inverse

ax*b=b=xa=¢ —b=a"'is thei
l.e., a*a '=a‘'*xa=e—a IS
. (G, =) is a group




Examples for GROUPS

1.(Z,+),(Q, +),(R, +),(C, +) are additive groups,

0 is the additive identity.

2.(Q",+),(R",+),(C", ) are multiplicative groups,
1is the multiplicative identity. Here X* = X-{0},X=Q,R,C.

3.(Z', +)is not a Group, where Z = {-----3,-2,-1,0,1,2,3,----}

-+ Multiplicative inverses of non —zero elements doesno

i.e., Multiplicative inverse of a is E(a #0)
a

- Multiplicative inverse of 2 is % but ;




COMMUTATIVE GROUP

Let (G, *) beagroup anda,beG. Gis saidto be a
commutativegroup 1If a*b=b*xa Va,beG

In additive Group = a+b=b+aVvabeG
In multiplicative Group = a-b=Dbe.a Va,beG

1.(Z,+),(Q, +).(R, +),(C, +) are commutative
groups w.r.t addition.
2.(Q",+), (R",¢). (C’, +) are commutative grou

w.r.t multiplication. Here X" = X —{0f,

3. (Z*, ) is not a Commutative Grou




PROBLEMS

If G=Q-{1} and >k isdefinedonGas a*b=a+b-ab
then show that !G, *) is an abelian group.

1. Closure Property

Let a,beG —a=1lb=x1and a+b,ab G
— a+b—ab eG — axb e G

—> * IS a binary operation on G.
2. Associative Property

LHS =a=(b=xc)=a=*(b+c—bc)
—a+(b+c—bc)—a(b+c
—a+b+c—ab—-bc—c

RHS =(a*b)*c=(a+b—ab)=*c

=(a+b—ab)+




3. Ildentity Property

Leta,be G and axb =a

—b(1—a)=0

— b =0

—a+b—ab =a
ca=1

.b=0=e iIs the iIdentity element in G

4.

INnverse Property

Let a,beG and axb =e

—a+b—ab =0

A d

— b = IS the iInverse element of a |

a—1
- (G, =) is a group
5. Abelian Property
Let a,beG
a*b=a+b—ab=b+a—
- (G, =) isan ab




1. If G =R —{-1} and = is defined on G, as
a*b=a+b+ab va,beG then show that
(G, *) is an abelain group.

2. If = i1sdefinedon Z,asa*xb=a+b -3
then show that (Z, *) is an abelain group.

3. If ois defined on Q", as aob = % VabeQ”

then show that (Q", 0) is an abelain group.

4. Show that the G = {x/ x =23°and a,b e

IS an abelain group w.r.t. multiplicati




Cancellation laws are hold in a group G ‘

Let G be agroup and a,b,c e G
Take ab = ac ( ata=aa!= e)
—a'(ab)=a"(ac)= (a‘la)b = (a‘la)c

— (e)b=(e)c =>b=c(~.-ae=ea=a)

.. Left cancellation law hold In G.

Let G be agroup and a,b,ceG

Take ba=ca (-a'a=aa’=e)
= (ba)a™ =(ca)a’ =b(a'a)=
= b(e)=c(e) =b =

. Right cancellation la




‘ Elementary Properties of agroup G ‘

Proof : Let G be agroup and e and e' are two
identity elements in G.(" e, e'€G)
Claim : We prove thate =e'

celsidentity elementin G = ae=ea=a VaeG

e'eG —e'e=ee'=e'>(1)

- e"1s identity elementin G = a.e'=e'.a=a

reeG —ee'=e'e=e—>(2)

From (1)&(2),we get e =e’
Hence proved




‘ In a group, Inverse of any element is unique

Proof : Let G beagroup and b and c are two
inverse elementsofain G. (e G)

Claim : We prove thatb =c

b iIsinverse elementofa= ab=b.a=e VaeG —>

.+ C IS Inverse elementofa = ac=c.a=e Va




-1

‘Let G be a group, if ac Gthen prove that (a*) =a ‘

\

Let Gbeagroupanda, beG

Let b=a™" = b is the inverse element of a
—ab=e and ba=e
~ba=ab=e¢e

—a=b" (.aistheinverseele
—a= (a‘l)_1 ( at

Hence prove




Let Gbeagroup, if a,beG then prove that
(ab) " =b7a™

Proof : Let G beagroup and a, b eG
By inverse property aa ' =a a=¢e

By identity property ae =ea =a

Now
(ab)(b?a™*)=a(bb™*)a*=a(e)a’=aa’=
(ba™)(ab)=b*(a'a)b=b"(e)b =

~(ab)(b*a*)=(ba*)(ab)=e
= (b™a )=(ab) (~-ab =
Hence proved




PROB : If G is a group such that (ab)” =a"b™ VvabeG
for three consecutive + ve integers then show that
(G, -) is an abelian group.

Proof: Let G be a group and a,b € G
Suppose m,m+1, m+2 be the three consecutive

integers such that — (ab)” =a™b™,

(ab)™"" =a™b™*, and (ab)"" =am?pm*?

Claim : We prove that G is an abelian group

- (ab)""" =am™?b™? = (ab)" " (ab) =am"'ab™"'b

= a™b™* (ab) =a™"* (ab™™")b

= a™*(b™"a)b =a™*(ab™™* )b (-.- Cancell

= (b™"a) =(ab™*) = a™(b™"a)=a"

— a™b™ (ba)=am""b™"* = (ab)" (

— (ab)" (ba) =(ab)" (ab) =
. G iIs an abeli




Theorem : Let G be a group and a,b € G then show that
the equations ax = b and ya = b have unique solutions.

Proof: Let Gbeagroupanda,beG=a b eG
Given equationax=b = a*(ax)=ab
= (a"a)x=a'b =(e)x=a'b =x=a'b
Now ax=a(a'b)=(aa*)b=(e)b=Db

-.a b is a solution of the equation ax =b
We prove that it is a unigue solution

Let x,,X, be two solutions of ax=Db

— ax, =band ax, =b = ax, =ax, = X, =

. The equation ax = b has unique soluti

Similarly we prove that ya =Db has
Hence proved




ldempotent Element: Let G be a group andzae G.
‘a’ is said to be an idempotent element if d = d.

Theorem: Let G be agroup and g < G. Show that
‘a’ is an idempotent element in G iffa = e.

Proof: Let Gbeagroupande,aeG
Suppose a is an idempotent = a‘ =a
—aa=ae—a=e (. LCL)

Again suppose a=e

— a.a=a.e—=a° =a= a is idempote
Hence proved




Congruent modulo n

Let n be a positive integer and a, b € Z.
Then a is said to be congruent to b modulo n

if n divides a-b. It is denoted by a=b(modn)
.a=b(modn)<n/a-bORa-b=ngforgeZz
b

Note:adividesb=a/b OR — ORb=ag forgeZ
a
Examples
1. 32=2(mod5) - S2—2 S
5 5
2.—4757(wmd9y:_4g_7::

3. is 26 =5(mod4) ?
26-5 21
: T

No. - =0 (-4




Prove that the relation congruent modulo n is an
equivalence relation on Z.

Problem: Let ae Z, Zis the set of Integers.
1. Reflexive Relation

nN/0=n/a—a

—a=a(modn) -a=b(modn)<n/a-b

2. Symmetric Relation
Let a=b(modn)=n/a-b

—a—-b=ng,qgeZ =b-a=n
—b-a=n(p), peZ|.-—q=

.a=b(modn)=b=a




3. Transitive Relation

Suppose that a=b(modn) and b =c(modn)
~a=b(modn)=n/a-b,

~b=c(modn)=n/b-c,
—=n/(a-b)+(b-c)=n/a-c = a=c(modn)
s.a=b(modn) & b =c(modn) = a=c(modn)

.. The congruent modulo n is an equivalence relation.
Hence Completed.

RESIDUE CLASSES
The equivalence classes under tFr

congruent modulonon Z ¢
classes modulo n.




NOTE
1. The residues class containing an inter

a is denoted by [a] OR a.

2. The set of all residue classes modulo n iIs
denoted by Z .
3. If n is a positive integer then we write

zZ ={(_),_1,_2 ----------- n—1} ando(Z,)=n

4. 1fae Z then a=r € Z_,where r is the remainder

of a when divided by n [ o4 Fj
n

5. The set {o, 1, 2. n —1}is called th

set of residue classes modulo n.
6. The set {0,1,2 ----------- N —1} is C

set of least positive residue c




Example

We know that Z2_ = {0,1, 2,3--------- N —1}

Ol
|




Let S be a semigroup. If for x,y €S, X’y =y = yx°
prove that S is an abelian group.

Let S be a semigroup and X,y € S
Given condition X’y =y =yx*(ab=ba=a=b =¢)

=X =6 = XX=¢ =it
XeS=x=x"similarly yeS=y=y"
Claim : We prove that S is abelian.

Now X, YyeS=XyeS

= (xy)=(xy) =y " =yx
. SIs an abelian group.
Hence Co




APPLICATIONS OF GROUP THEORY

Groups are vital to modern algebra; their basic
structure can be found in many mathematical
phenomena. Group theory has applications in physics,
chemistry, and computer science, and even puzzles
like Rubik's Cube can be represented using group
theory.

* 1. Applications of group theory
abound. Almost all structures
in abstract algebra are special cases
of groups. Rings, for example, ¢an be
viewed as abelian
groups (corresponding to addition)
together with a second operation
(corresponding to multiplication).
Therefore, group theoretic
arguments underlie large parts of the
theory of those entities.




CONCLUSION

| have concluded that PPT presentation is very useful
in establishing objectives, illustrating concrete
examples and statistical analysis.

| hope that utilizing all of these concepts through PPT
slides helps to engage students with different types
of learning styles.

| have added definitions, examples, problems and
theorems of the chapter of Groups in brief and short
methods.

Students may be demonstrated the abili
effectively utilize a variety of teaching tec
classroom strategies to positively infl
learning.






