

 S.K.B.R.COLLEGE AMALAPURAM

1

DATA STRUCTURES

Data Structure is a collection of data elements organized in a specified manner

and accessing functions are defined to store and retrieve individual elements.

Data Structure is a study of different methods of Organizing the data and possible

operations on these structures.

Difference between Data types and Data Structures :

Data type is collection of finite set of permitted values, and a set of operations on

these values. Where as, Data Structure is a study about the Organizing the related data to

enable us to work efficiently with data, exploring the relationships with the data.

 Data Structures

Linear Data Structures Non-linear Data Structures
 Eg: Eg:

 Stacks Trees

 Queues Graphs

 Linked Lists

STACK :

A Stack is an ordered collection of items into which new items can be inserted

and from which items can be deleted at one end, called the Top of the stack. That is the

removal or addition of elements can take place only at the top of the stack. So stack is

expanded and shrink with a passage of elements or items.

A stack is defined as a data structure, which operates on a Last In First Out

(LIFO) basis. It is generally used to provide temporary storage space for values. Stack

most commonly used as a place to store local variables, parameters, and return addresses

when a function is called. This method is very useful in recursion process.

Operations on Stack:

There are several primitive operations. We can define the following necessary

operations on Stack.

1). Create(S) to create S as an empty Stack

2). Push(S, i) to insert the element i on top of the Stack.

3) Pop(S) to remove the top element of the Stack and to return the removed

element as a function return value.

4) Top(S) to return only the top element of the Stack.

5) Is_Empty(S) to check whether the Stack is Empty or not ?. If it is empty this

function returns value one i.e. 1, otherwise returns zero i.e. 0

6) Is_Full(S) to check whether the Stack is Full or not ?. If it is full this

function returns value one i.e. 1, otherwise returns zero i.e. 0

 S.K.B.R.COLLEGE AMALAPURAM

2

The Stack Pointer keeps track of the current position of the Stack. When an

element is placed or added on the Stack, it is said to pushed on the Stack. When an

element is removed from the Stack, it is said to be popped off the Stack. Two additional

terms or Pre-conditions almost always used with Stacks are Overflow and Underflow.

Overflow occurs when we try to push one more element or more elements on a Stack

which is already Full. Where Underflow occurs when we try to pop an element from the

Stack which is already Empty.

Representation of Stack
Let us take an Empty Stack whose name is S and its capacity is 3. i.e. This stack

maintains only up to 3 elements. The Top pointer points the top element of the Stack.

 Step1. push(S,1)

 S S

 Top

 1 Top

Step2. push(S,2) Step3. push(S,3)

 3 Top

 S S

 2 Top 2

 1 1

 Step4. pop(S) Step5. pop(S)

 S S

 2 Top

 1 1 Top

 S.K.B.R.COLLEGE AMALAPURAM

3

Let us consider S is an Array to represent Stack, Top is a Stack Pointer (Index),

Max is the Maximum size of an Array S, Item is a value to be store or delete.

Algorithm for Create a Stack.

CREATE(S, Top)

Step 1. Top  0

Step 2. Return

Algorithm for Delete an item

POP(S, Top)

Step 1. If (Top = = 0) then

 Print ‘ Stack is Underflow’

 Return .

Step 2. item  S[Top]

Step 3. Top  Top –1

Step 4. Return(item).

Algorithm for Insert an item

PUSH(S, MAX, Top, item)

Step 1. If (Top = = MAX) then

 Print ’ Stack Overflow ‘

 Return.

Step 2. Top  Top + 1

Step 3. S[Top]  item

Step 4. Return.

Algorithm for Access Top element

 TOP(S, Top)

Step 1. If (Top = = 0) then

 Print ’ Stack is Underflow ’

 Return

Step 2. Return(S[Top])

Algorithm For Overflow Condition

 Is_FULL(S, Top, Max)

Step1. If (Top = = MAX)

 Return(1)

 Else

 Return(0)

Algorithm For Underflow Condition

 Is_EMPTY(S, Top)

Step1. If (Top = = 0)

 Return(1)

 Else

 Return(0)

 S.K.B.R.COLLEGE AMALAPURAM

4

Implementation of Stack

 There are two ways to implement the Stacks. They are

1). Using Arrays Implementation

2). Using Linked List Implementation.

Since Stacks are dynamic data Structures, it can grow & shrink during their

operations. However, Stacks can be implemented using arrays by specifying a maximum

size. So the size of an array is fixed at the time of its declaration itself. We can fix one

end of the array as bottom of Stack. The other end of array may be used as a top of the

Stack. By using this top end we can pushed and popped the items. We need another

field to maintain the index of top of that Array.

Finally we can declare a stack as a structure, containing two members. Element

is an array to maintain elements of the Stack is the first member and the Second one is

an integer data type top, to indicate the current top element index of the Stack

Because an array size is fixed, in the array (linear) representation of a stack, only a fixed

number of elements can be pushed onto the stack. If in a program the number of elements to be
pushed exceeds the size of the array, the program might terminate in an error. We must overcome

this problem.

Similar to the linear representation, in a linked representation stackTop is used to locate

the top element in the stack. However, there is a slight difference. In the former case, stackTop

gives the index of the array. In the latter case, stackTop gives the address (memory location) of

the top element of the stack.

Applications Of Stacks

 Recursion is the ability of a model to call itself. It is an important facility in many

programming languages which uses stacks. Another important application of Stacks is

expression evaluation. In general, simple arithmetic expressions can be represented in

three ways : Infix, Prefix, Postfix. Consider the binary expression A + B . Here A and B

are two operands and + is a binary operator(An operator is a binary operator if it is

associated with two operands)

The three notations are :

 A + B Infix Notation

 + A B Prefix Notation (Polish)

 A B + Postfix Notation (Reverse Polish)

 In Prefix notation the operator precedes the two operands, in Infix notation the

operator in between the two operands and in Postfix notation the operator follows both

operands.

 In any arithmetic expressions the five arithmetic operations Addition, Subtraction,

Multiplication, Division and Exponentiation are represented by the following five

operators + , - , * , / and $ (for our convenience $ represents Exponentiation).

 S.K.B.R.COLLEGE AMALAPURAM

5

 Operator - Precedence Rules

Rank Operator Associativity

1 () Left to Right

2 $ Right to Left

3 * and / Left to Right

4 + and - Left to Right

Note : The Prefix form of a Complex expression is not the mirror image of Postfix form.

The following are some of the examples of expressions in three notations

 Infix Prefix Postfix

A + B + A B A B +

A + B – C – + A B C A B + C –

(A + B) * (C – D) * + A B – C D A B + C D – *

((A+B)*C–(D–E))$(F+G) $–*+ABC–DE+FG AB+C*DE – –FG+$

A – B / (C * D $ E) – A / B * C $ D E A B C D E $ * / –

Eg :-

Conversion A $ B * C – D + E / F / (G + H) from Infix notation to Prefix notation

Step1. G + H  + G H

 A $ B * C – D + E / F / + G H

Step2. A $ B  $ A B

 $ A B * C – D + E / F / + G H

Step3. $ A B * C  * $ A B C

* $ A B C – D + E / F / + G H

Step4. E / F  / E F

* $ A B C – D + / E F / + G H

Step5. / E F / + G H  / / E F + G H

* $ A B C – D + / / E F + G H

Step6. * $ A B C – D  – * $ A B C D

 – * $ A B C D + / / E F + G H

Step7. – * $ A B C D + / / E F + G H  + – * $ A B C D / / E F + G H

Result : + – * $ A B C D / / E F + G H

 S.K.B.R.COLLEGE AMALAPURAM

6

Conversion A $ B * C – D + E / F / (G + H) from Infix notation to Postfix notation

Step1. G + H  G H +

 A $ B * C – D + E / F / G H +

Step2. A $ B  A B $

 A B $ * C – D + E / F / G H +

Step3. A B $ * C  A B $ C *

A B $ C * – D + E / F / G H +

Step4. E / F  E F /

A B $ C * – D + E F / / G H +

Step5. E F / / G H +  E F / G H + /

A B $ C * – D + E F / G H + /

Step6. A B $ C * – D  A B $ C * D –

 A B $ C * D – + E F / G H + /

Step7. A B $ C * D – + E F / G H + /  A B $ C * D – E F / G H + / +

Result : A B $ C * D – E F / G H + / +

Conversion the Expression from Infix to Postfix:

 First we scan the Complete Infix expression as a string and select one empty

Stack. Next we check each and every character from the first character of the Infix string

to last character. While the checking process is going on we insert the character

immediately into the Postfix string if the current identified character is an operand,

Otherwise (current character is an operator) we keep that operator in the Stack. Before

storing that current operator in Stack, we POP the operator from the Stack and insert into

the Postfix string as long as the Stack is not empty and the priority of Top operator in the

Stack is greater than or equal to the priority of current operator. Later we PUSH the

current operator into the Stack even if the above compound condition is failed. This

process is completed once the checking is reach to the last character.

Sometimes the Stack still contains some operators after that checking process. If

Stack remains some operators, POP the operator from the Stack until Stack is empty and

insert into the Postfix string.

 S.K.B.R.COLLEGE AMALAPURAM

7

Algorithm

Step1. Clear the Stack S .

Step2. Read the Complete Infix expression

Step3. symbol  First Character in Infix expression

Step4. While(symbol is not a End of Character)

 {

 If symbol is an Operand

 Add symbol to the Postfix string

 Else

 {

 While(! Is_Empty(S) && Precedence(Stack_Top(S) , symbol))

 {

 Topsymb  Pop(S)

 Add Topsymb to the Postfix string

 }

 Push(S , symbol)

 }

 symbol  Next Character in Infix expression

 }

Step5. While(! Is_Empty(S))

 {

 Topsymb  Pop(S)

 Add Topsymb to the Postfix string

 }

Eg:- Infix String A + B * C

Symb Stack Contents Output (Postfix String)

A Empty A

+ + A

B + A B

* + * A B

C + * A B C

End of Input Empty A B C * +

Evaluation Of Postfix Expression

 First we scan the complete Postfix expression as a string and select one empty

Stack. In Postfix expression, each operator refers operation on the previous two operands.

So that we start with first character of Postfix string and check each & every character

until the last character. If the current character is an operand then put that operand into

the Stack by PUSH. Otherwise (i.e. it is an operator and it refers to the Top two

operands) we get the top two operands separately by POP, perform the indicated

operation on the two operands and PUSH that result on to the Stack. The result will be

available for use as an operand of the next operator.

 If the checking reach to the last character, the above process completed and the

Stack contains only one operand that is the result of the Postfix expression

 S.K.B.R.COLLEGE AMALAPURAM

8

Algorithm

Step1. Clear the Stack S.

Step2. Read the Complete Postfix expression.

Step2. symbol  First Character in Postfix expression.

Step3. While(symbol is not a End of Character)

 {

 If(symbol is an Operand)

 Push(S, symbol)

 Else

 {

 X2  Pop(S)

 X1  Pop(S)

 R  Result of applying Symb to X1 & X2

 Push(S, R)

 }

 symbol  Next character in Postfix expression

 }

Step4. Return(Pop(S)).

Check Whether the Arithmetic expression is properly balanced or not?

 To indicate the boundaries of sub expressions, we some times use BRACKETS

(parentheses, brackets and braces). So we must be care take to balance all these

BRACKETS properly in the given expression. Otherwise the expression may be corrupt.

Eg:- { [a * b - (b + c)] * [sin(x-y)] } – (x – y)

To determine, whether the arithmetic expression is properly balanced or not we

must check that a right counter part ‘)’ or ‘]’ or ‘}’ exist for each left ‘(’ or ‘{‘ or ‘[‘ in a

proper order. To do this we use a Stack and start search from the first character to the last

character for the given expression. Whenever we encountered a LEFT - BRACKETS (

left parentheses ‘(’ or left braces‘{‘ or left bracket ‘[‘) , we push onto the Stack.

Whenever we encountered a RIGHT - BRACKETS (right parentheses ‘)’ or right

bracket ‘]’ or right braces ‘}’) , we pop the top symbol from the Stack and check to see

whether the encountered RIGHT - BRACKET and Stack top LEFT - BRACKET are

same type or not?. We continue if they are same type, otherwise we stop the process.

 The expression has properly balanced, if the Stack is empty by the time we

get to the end of the expression and all pairs of matched BRACKETS were of the same

type. Otherwise, the BRACKETS are not balanced properly.

Algorithm

Step1. Matching  True

Step2. Clear the Stack S.

Step3. Read symbol as a first character from the input string.

 S.K.B.R.COLLEGE AMALAPURAM

9

Step4. While (symbol is not a end of input string & Matching is True) do

 {

 If (symbol is ‘ (‘ or symbol is ‘ [‘ or symbol is ‘ { ‘)

 Push(S ,symbol)

 Else if (symbol is ‘)‘ or symbol is ‘] ‘ or symbol is ‘ } ‘)

 {

 If (Is_Empty(S))

 {

 Matching  False

 Write “More Right Brackets than Left Brackets“ && Return

 }

 Else

 {

 topsymb  Pop(S)

 If (! Equal_Type(topsymb , symbol))

 {

 Matching  False

 Write “ Miss matched Brackets “ && Return

 }

 }

 }

 symbol  Next character in the input string.

 }

Step5. If (Is_Empty(S))

 Write “ Brackets are Properly Balanced”

 Else

 Write “ More Left Brackets than Right Brackets “

 S.K.B.R.COLLEGE AMALAPURAM

10

QUEUE

 A Queue is an ordered group of elements in which elements are added one end

(known as Rear) and elements are deleted from the other end (known as Front). There

fore this data Structure is commonly known as FIFO (First In First Out) list.

Eg:- A line at a Bank or at a Bus stop or at a Ticket counter.

 Front Queue Rear

The following are the Primitive Operations on Queue.

1. CreateQ(Q) Creates an empty Queue Q.

2. Insert(Q, x) Insert an item x at the rear of the Queue Q.

3. Remove(Q) Delete the front element from the Queue Q.

4. Is_empty(Q) It checks whether the Queue contain any elements or not ?

and it returns true if it is empty, otherwise it returns false.

5. Is_full(Q) It checks whether the Queue completely filled or not ? and

it returns true if it is full, otherwise it returns false.

 The insert operation can always be performed, since there is no limit to the

number of elements a Queue may contain i.e. In theory, there does not exist a Queue

Overflow. But in practice, implementation of a Queue have a maximum Queue Size. The

remove operations, however, can be applied only if the Queue is not empty. Otherwise

we may get a situation Under Flow.

Let us create an empty Queue Q with capacity 4 and perform Queue Operations.

The following steps represents the Diagrammatic representation of Queue.

Step1. Create(Q)

 Rear

 Q

Step2. Insert(Q, a) , Insert(Q, b) a b c d

 Insert(Q, c) , Insert(Q, d)

Front Q

 Rear

Step3. Remove(Q)

 Remove(Q)

 c d

 Front

 S.K.B.R.COLLEGE AMALAPURAM

11

Let us assume Q is an Array to represent Queue. The first and last elements are

indicated by front & rear. MAX is the Maximum size of an Array Q and Item is a value

to be store or delete

Algorithm for to Initialize a Queue

CreateQ(Q)

Step1. Rear  0

Step2. Front  1

Step3. Return

Algorithm for to Insert an item into a Queue

 InsertQ(Q, item, Rear, MAX)

Step1. If (Rear= = MAX) then

 {

 Write ”Queue Overflow”.

 Return

 }

Step2. Rear  Rear + 1;

Step3. Q[Rear]  item

Step4. Return.

Algorithm for to Delete an item from the Queue

 RemoveQ(Q, Rear, Front)

Step1. If (Front > Rear) then

 {

 Write “ Queue Underflow”.

 Return.

 }

Step2. item  Q[Front]

Step3. Front  Front + 1

Step4. Return(item)

Note: Total Number of elements in Queue is (Rear + 1) – Front.

Drawback in Linear Queue :

To be explain this concept, let us consider a Queue Q with capacity 5 and insert

the first five Alphabets (A, B, C, D, E.) onto the Queue Q. The Queue is completely full

and the bellow figure represents the state of the Queue Q.

 1 2 3 4 5

 A B C D E

 Front Q Rear

 S.K.B.R.COLLEGE AMALAPURAM

12

Suppose, if we delete the first three elements (A, B, C.) from the Queue Q then

the Queue contains only two elements (D & E). Rear still points to the same element but

Front points to an element D. The state of the Queue is :

 Front Rear

 Q

 D E

 1 2 3 4 5

 Now we try to add some elements onto the Queue, since the Queue is not filled .

But according to InsertQ algorithm we can’t add any element. Because the rear reach to

the last position of the queue. Even the queue contains some free positions, we can’t

insert elements onto the queue. This is the drawback of Linear Queue.

There are some methods to overcome this drawback . In one method at the time of

deletion, after delete an element we check whether the Queue is empty or not?. If it is

empty then immediately we reinitialized the queue. i.e. we set front & rear positions to

the initial positions as in CreateQ algorithm.

The Modified Algorithm for to Delete an item from the Queue

 Remove(Q, Rear, Front)

Step1. If (Front > Rear) then

 {

 Write “ Queue Underflow”.

 Return.

 }

Step2. item  Q[Front]

Step3. Front  Front + 1

Step3. If(Front = = Rear) then

 {

 Front  1

 Rear  0

 }

Step4. Return(item)

In second method we implement the queue like a Stack, where we fixing one end

of the Stack Similarly, in Queue, we fix the Front of the Queue so that it is always

representing the first element of the array. This means whenever we delete an element,

the Queue is shifted to the beginning of the Array. i.e. The deleted first position is

occupied by second element, and the second position is occupied by third element and so

on up to last element. The below Steps & figures represents the process of this method

 S.K.B.R.COLLEGE AMALAPURAM

13

Step1. Create a Queue Q and Insert the first five Alphabets (A, B, C, D, E.).

1 2 3 4 5

A B C D E

 Front Q Rear

Step2. Remove(Q)

 1 2 3 4 5

 B C D E

 Front Q Rear

Step3. Remove(Q)

 1 2 3 4 5

 C D E

 Front Q Rear

This Procedure could be successfully implemented, but it is too inefficient.

Because, if we want to delete an element or some elements from a large Queue then the

processing required to remove first element and shifting all the elements towards its left

will be a costly affair.

Another solution to this problem is to use the array holding the Queue as a

Circular array. This means we imagine the first element of the array as immediately

following its last element. i.e. even though the last position of the array is occupied, a

new element can be added at the first position of the array. The diagrammatic

representation of Circular Queue is :

 6

 1 5

 2 4

 3

 S.K.B.R.COLLEGE AMALAPURAM

14

CICULAR QUEUE

Circular Queue is a Queue, in which the last element comes just before the first

element and here also elements are added through Rear and deletions performed through

Front. Generally in Circular Queue, we can’t fix the first and last positions, because the

Front & Rear are circularly rotated. While inserting elements on Circular Queue, as long

as the current position of rear is not same as the last position (MAX th position) of

Circular Queue, rear is incremented by one and insert the new item in Rear th position.

Whenever rear is located in last position, instead increment rear, reset the rear to the first

position of Circular Queue. The same procedure followed for Front while deleting

elements from circular Queue.

Let us consider an Empty Circular Queue and observe the situations while

performing Insertions & deletions. The following diagram represents its states.

Step1. CreateCQ(Q) & Insert the first three Alphabets (A, B, C).

 6

 Front

 1 A 5

 Q

 2 B 4

 C

 3 Rear

Step2. Delete all the elements from the Circular Queue.

 6

 1 5

 Q

 Front

 2 4

 3

Rear

 In this Step Rear position is 3 and Front position is 4.

i.e. Rear = 3 and Front = 4

 S.K.B.R.COLLEGE AMALAPURAM

15

Step3. Insert elements on Circular Queue, until it gets full.

 6

 C

 1 D B 5

 Q

 Front

 2 E A 4

 F

 3

Rear

 In this Step Rear position is 3 and Front position is 4.

i.e. Rear = 3 and Front = 4

What we have observed is, the Front & the Rear have the same values 4 & 3

respectively in both the steps Step2 and Step3. But Step2 represents Underflow

situation where as the Step3 represents Overflow situation. So it is very difficult to

determine the Queue state, when the Queue is empty & when it is full.

To overcome the above problem, we use one Dummy position in Circular Queue

that is always pointed by Front. The last element is pointed by Rear but the first element

is the next immediate element of Dummy position. So the first element in Circular Queue

is the immediate next element of Front. That means Front points to recently deleted item

position but not the first element position.

Algorithm for to Insert an item into a Circular Queue

 InsertC_Q(Q, item, Rear, MAX)

Step1. If (Rear= = MAX) then

 Rear  1

 Else

 Rear  Rear + 1

Step2. If (Front = = Rear) then

 {

 Write “ Circular Queue is Overflow “

 If (Rear = = 1) then

 Rear  MAX

 Else

 Rear  Rear – 1

 Return.

 }

Step3. Q[Rear]  item

Step4. Return.

 S.K.B.R.COLLEGE AMALAPURAM

16

Algorithm for to Delete an item from the Circular Queue

 RemoveC_Q(Q, Rear, Front)

Step1. If (Front = = Rear) then

 {

 Write “ Queue Underflow”.

 Return.

 }

Step2. If (Front = = MAX) then

 Front  1

 Else

 Front  Front + 1

Step3. item  Q[Front]

Step4. Return(item)

In Time Sharing Operating System, N number of Users are connected to the

Computer System and all the Users share the System with a common time – slice or time

Quantum. Here CPU is switching from one User Job to another User Job when the

allotted time – slice is completed and this Process is going on from first User to last User

in a circular manner. So this is One of the Application of Circular Queue.

Double Ended Queue

A Double Ended Queue, or simple pronounced as Dee-Q, is a Queue in which the

elements can be inserted and deleted at both ends of a Queue. This is very flexible

structure when compared to Stacks and Queues.

The conceptual view of Double Ended Queue is

 Insertion Insertion

 Front Rear

 Deletion Deletion

 Dee-Q can also maintained in circular fashion. We can have several other types

of Queues by limiting or relaxing some constraints. Two out of them are frequently used:

1. Input – restricted Double Ended Queue

2. Output – restricted Double Ended Queue

 S.K.B.R.COLLEGE AMALAPURAM

17

The Input– restricted Double Ended Queue is a Double Ended Queue in which

deletions are allowed at both ends but insertions are allowed only at one end. The

Output– restricted Double Ended Queue is a Double Ended Queue in which insertions are

allowed at both ends but deletions are allowed only at one end.

Note:- In this Dee-Q, Rear and Front initialized to Zero position. Rear points to last item

position in the List but Front points to recently deleted item position. i.e. Front

points to preceded element of the first item in the List.

 Front Rear

 Addition Deletion Deletion Addition

 Dee-Q

 Let us assume Q is an Array to represent Dee-Q. The MAX is the Maximum size

of an Array Q and Item is a value to be store or delete. Front in Left side and Rear in

Right side of the Dee-Q. The following algorithms represent the operations of Dee-Q.

Front Side Operations

Addition

Step1 If (Front = = 0)

 {

 Write “ Addition is not Possible at Front Side”

 Return

 }

Step2 Q[Front]  Item

Step3 Front  Front –1

Step4 Return

Deletion

Step1 If (Front = = Rear)

 {

 Write “ Deletion is not Possible at Front Side”

 Return

 }

Step2 Front  Front + 1

Step3 Item  Q[Front]

Step4 Return(Item)

 S.K.B.R.COLLEGE AMALAPURAM

18

Rear Side Operations

Addition

Step1 If (Rear = = MAX)

 {

 Write “ Addition is not Possible at Rear Side”

 Return

 }

Step2 Rear  Rear + 1

Step3 Q[Rear]  Item

Step4 Return

Deletion

Step1 If (Front = = Rear)

 {

 Write “ Deletion is not Possible at Rear Side”

 Return

 }

Step2 Item  Q[Rear]

Step3 Rear  Rear –1

Step4 Return(Item)

PRIORITY QUEUE

 A Priority Queue is a Queue that contains items that have some predefined

ordering. Unlike the usual removal of the first item, when an item is removed from a

Priority Queue, the item with highest priority is removed.

To implement Priority Queue we follow two methods. The First method is while

inserting items onto the Priority Queue the items should be stored in their corresponding

positions on the basis of their priority. In Second method at the time of insertion items are

stored in Queue manner but at the time of deletion the deleted item should be the highest

priority item.

For example, let us assume that an integer Priority Queue has small integer with

the highest priority and added the items into the Priority Queue 4, 3, 1, 5, 2 sequentially.

Now we observe the two different approaches.

 According to First method, the state of Priority Queue is given bellow. Here the

item to be deleted is pointed by Front, which has the highest priority than all other items

1 2 3 4 5

 Front Rear

and also the first inserted element than all other elements. The item to be deleted from

this Priority Queue is 1. If the number 0 is added to the Queue after the removal of 1,

 S.K.B.R.COLLEGE AMALAPURAM

19

then the 0 will be in the front of the Queue, even though it is last item to be added to

the Queue. Now the new state of this Priority Queue is

0 2 3 4 5

 Front Rear

 According to Second method, new item inserted at Rear side but Front does not

point to the deleted item position (of course Front points to First inserted item position

but not deleted item position). So the state of Priority Queue is given bellow. To be delete

 4 3 1 5 2

 Front Rear

an item from this Queue, first it search for an element which has the highest priority and

then deletes that element.

Note:- If a new item is added to the Priority Queue which has the same value as in

existing number of the Queue, then the new item has a lower precedence than the

item already existing.

 S.K.B.R.COLLEGE AMALAPURAM

20

LINKED LISTS

In an Array successive node of the data objects are at a fixed distance apart. So

there are some drawbacks in Arrays. They are

1) Let us consider an Array whose name is List with size 20 and it contains only

10 elements. They are { 1, 5, 8, 9, 12, 15, 55, 59, 68, 75 }.

1 5 8 9 12 15 55 59 68 75

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Suppose we want to add 10 to this List (in ascending order). Then we will have

to move the elements 12, 15, 55, 59, 68, 75 one location up to make space for new

element 10 at the proper place. Similarly, if we have to delete an element 55 from this

List, we again have to move 59, 68, 75 one location down. This particular problem occurs

when we perform insertions or deletions in the middle and we have to move many

elements so as to maintain sequential representation of the list.

 2) In Arrays storage may be wasted. This means we have to allot the Maximum

size, but in some cases we can’t reach to (use) maximum size.

 3) In Arrays, once the memory size is allotted at its declaration, we can’t increase

or decrease its size during the execution of a program.

 Using Linked Lists can solve all these problems. In Linked Lists, the item may be

placed any where in memory instead of being located a fixed position in the case of

sequential representation. In this Linked representation, we store the address of the next

element with the Data item.

Linked List:

 A linear collection of data items, each data item is connected with their adjacent

data items. List is a Dynamic data structure and its size is variable. Items may be added

and to it or deleted from it. That’s why the Linked List is a very powerful and flexible

Dynamic data structure.

Linked allocation:
 In Linked lists the data items are logically adjacent but not physically. Each item

is allocated space as it is added to the list. A link is kept with each item to the next item in

the list. This type of allocation is called Linked Allocation.

 The item in the Linked List is called a Node . Each item or node in a linked list

must contain at least two fields, one is information field and the other one is address field

(address of the next item). The first field contains the actual element on the list which

may be simple integer, character, a string or even a large record. The second field which

is a pointer contains the address of the next node in the list used to access the next item.

 The Diagrammatic representation of an item or node is

Information Address

 Node

 S.K.B.R.COLLEGE AMALAPURAM

21

The entire list can be maintain by an external pointer (LIST), pointing to the

first node in the list. So we can access the first node through the external pointer.

 LIST

 Node

The second node through the address field (pointer) of the first node, the third node

through the address field (pointer) of the second node etc… till the end of the list. The

address field of the last node contains a special value known as NULL and it is

diagrammatically represented by a symbol . This is not a valid address, only tells us

that we have reached the end of the list.

 LIST

External Pointer

Drawbacks in Linked Allocation

1. No direct access to a particular element.

2. Additional Memory required for pointers (address fields).

However, these limitations are not consider because of their powerful

capabilities.

Self Referential Structure

 It is sometimes desirable to include with in a structure one member that is a

pointer to the parent structure data type. In general terms, this can be represented as

struct tag

 {

 data type member 1;

 data type member 2;

 .

 .

 struct tag * member N;

 };

 Where member N refers to the name of a pointer variable. Thus, the structure of

type tag will contain a member that points to another structure of type tag. Such

structures are known as Self Referential Structure.

Eg:- struct link

 {

 char color[10];

 struct link *next;

 };

C_list Red Blue Black Green White

Where C_list is an External Pointer.

Information Address

 S.K.B.R.COLLEGE AMALAPURAM

22

Operations on Linked List

There are five basic types of operations associated with list data abstraction.

1. To determine if the list is empty or not ?.

2. Add new elements any where in the list.

3. To check if a particular element is present in the list or not?

4. To delete a particular element from the list placed any where in the list

5. To print all the elements of the list.

If P is a pointer to a node, then the notations to be used in Algorithm are :

 Node(P) refers to the node pointed by P.

 Info(P) refers to the data part of that node pointed by P.

 Next(P) refers to the Address part of that node pointed by P.

Info(Next(P)) refers to the data part of the next node which follows Node(P)

We can initialize the list by making the external pointer NULL.

 LIST  NULL
We can check whether the list is empty or not? by checking whether the external

pointer is NULL or not?. i.e.

If LIST = = NULL

 Write “ List is Empty”

Else

 Write “ List is not Empty”

 To visit or traverse or print the entire list from the first node to last node, we need

a to use a temporary pointer, T known as traversal pointer.

 T = LIST

 While(T != NULL) do

 {

 write “ Info(T) “

 T  Next(T)

 }

Inserting a node into Unordered Liked List

To add a new node containing data value x in the list, we need to follow the steps.

1. Get a new node, which is not in use.

2. Set the data field of the new node to x.

3. Set the next field of the new node.

4. Set the pointer list point to the new node.

First we get a new node by using the notation Getnode(New). This

Getnode(New) creates new node and sets the address of new node to a pointer New.

Latter we assign the data value x in info field of new node and we set the NULL value to

next field or address field of the new node. Now we have to decide where the new node

to be inserted. Generally in Liked Lists, we insert new node in last position of the List.

Before inserting a new node, first we have to check whether the List is empty or not? If

the List is empty then we assign the new node address to List External pointer, there after

new node is behave like a first node. Otherwise we reach the last node by traversing

technique and add this new node to the last node of List.

 S.K.B.R.COLLEGE AMALAPURAM

23

To de this, we can write the following Algorithm.

 Step 1 Getnode(New)

 Step 2 Info(New)  x

 Step 3 Next(New)  NULL

 Step 4 If(LIST = = NULL) Then

 Step 4.1 LIST  New

 Else

 {

 Step 4.1 T  LIST

 Step 4.2 While(Next(T) != NULL) do

 T  Next(T)

 Step 4.3 Next(T)  New

 }

The diagrammatic representation of inserting a new node in Linked List is :

1 Getnode(New) New

 suppose x is 3

2 Info(New)  3 New 3

3 Next(New)  NULL New 3

4 If LIST is Empty Suppose List is LIST NULL

4.1 Then LIST  New Then LIST 3

 New

Else (i.e LIST is not Empty)

Suppose List is LIST 93 1 12 45

 4.1 T  LIST. LIST 93 1 12 45

 T

 4.2 While(Next(T) != NULL) do

 T  Next(T)

 T

 LIST 93 1 12 45

4.3 Next(T)  New T New

LIST 93 1 12 45 3

 S.K.B.R.COLLEGE AMALAPURAM

24

Insert a node into Order Liked List

 In Order Linked List all the Nodes are arranged in sequence (sorted order) on the

basis of its information. So to insert a new node in this List, first we have to search proper

position, and then add new node in that position. The position may be first one or middle

one or last one in the List. The following Algorithm can handle and use different methods

to insert a node at any position in the Linked List. In this Algorithm we consider two

traversal pointers Curr & Rear. Curr visits the List from first node of the List until last

node and Curr try to identify our required position to be insert a new node, where Rear

stands behind Curr. i.e. while Curr is visiting, Rear points the previous node of Curr.

After Complete their visit, we check Curr & Rear states. If Curr & Rear does

not point to any node then the List state is Empty and we insert first node. If Curr does

not point to any node but Rear points to some one (ie. Last node) then the new node to be

inserted at last position. If Curr points to some one(ie. First node) but Rear does not

point any node then the new node to be inserted at first position. If Curr & Rear point to

two different nodes separately then the new node to be inserted in between Curr & Rear.

Step1 Getnode(New)

Step2 Info(New)  x

Step3 Next(New)  NULL

Step4 Curr  LIST

Step5 Rear  NULL

Step6 While(Curr ! = NULL && x > Info(Curr)) do

 {

Step6.1 Rear  Curr

Step6.2 Curr  Next(Curr)

 }

Step7 If(Curr = = NULL)

 {

Step7.1 If(Rear = = NULL)

Step7.1.1 LIST  New

 Else

Step7.1.1 Next(Rear)  New

 }

 Else

 {

Step7.1 If(Rear = = NULL)

Step7.1.1 {

 Next(New)  Curr

LIST  New

 }

 Else

 {

Step7.1.1 Next(Rear)  New

Step7.1.2 Next(New)  Curr

 }

 }

 S.K.B.R.COLLEGE AMALAPURAM

25

The diagrammatic representation of inserting a new node in Order Linked List

By Steps1,2&3. Getnode(New) Info(New)  x Next(New)  NULL

 New New x New x

If List is Empty

Suppose the List is LIST NULL

By Steps4&5 Rear points to NULL. Since List is NULL, Curr also points NULL.

In Step6 Since Curr is NULL, Control does not enter into Step6.

 Case: I In this Case Curr != NULL and Rear != NULL

 So, whatever the value of x, we add the New to LIST.

 LIST x

 New

 The new node is the first node in the List

If List is not Empty
 Suppose List is LIST 3 15 22 45

By Steps4&5

 Rear Curr

 NULL LIST 3 15 22 45

 Let us take X value is 50

 The new node is New 50

 After Step6, the States of Curr & Rear are

 Curr

 LIST 3 15 22 45

 Rear New 50

Case: II In this Case Curr = = NULL and Rear != NULL

 So, we add New as the next node of Rear

 LIST 3 15 22 45

New 50

, The new node is added at last position in the List.

 S.K.B.R.COLLEGE AMALAPURAM

26

 Let us take X value is 1

 The new node is New 1

 After Step6, the States of Curr & Rear are

 Rear Curr

 NULL LIST 3 15 22 45

 New 1

Case: III In this Case Curr ! = NULL and Rear = = NULL

 So, we add New as the first node of LIST

 Rear Curr

 NULL 3 15 22 45

 LIST 1

The new node is added at first position in the List.

 Let us take X value is 20

 The new node is New 20

After Step6, the States of Curr & Rear are

 Curr

 LIST 3 15 22 45

 Rear

 Case: IV In this Case Curr != NULL and Rear != NULL

 So, we add New in between Rear & Curr

 LIST 3 15 22 45

 New 20

 The new node is added in middle of the List

 S.K.B.R.COLLEGE AMALAPURAM

27

 Delete a node from Order / Un order Liked List

There may be nodes in the List, which are no longer required. Deletion of such

nodes is an essential operation on a Linked List. At the time of deletion, we may get any

one of the following four situations.

1. List is Empty and tries to delete a node.

2. What node we want to be deleted that node does not exist in the List.

3. The node to be deleted is a first node in the List.

4. The node to be deleted is a last node or in the middle of List.

When we want to delete a node from the List, some times the List may contain no

one node. In this case we have to print a message “ List is Empty & We can’t delete a

Node”.

In some cases even the List is not empty, a node we want to be deleted may not

exist in the List. Whenever that case is arrived, we have to print a message ” Node does

not exist in the List ”.

If the node to be deleted is the first one in the List, we are simply required to

move the External pointer from the first node to the second node of List. Since the

External pointer has changed its pointing location from deleted (first) node to its next

(second) node, there after no way is there to visit that deleted node. This can be

represented by the following diagrammatic manner.

 LIST 9 13 25 30

 9

 LIST 13 25 30

 If the node to be deleted is in the middle or in last position of the List, we

consider two pointers Curr & Rear, Curr starts with the first node of List and searches

for deleted node. Where Rear always points to the previous node of Curr. Once Curr

points to the deleted node position we have to do two things, first we disconnect the link

in between a pair of nodes Rear & Curr, later we have to provide a connection in

between Rear & Next node of Curr. The diagrammatic representation of this deletion is

LIST 3 5 18 25 39 45

 Suppose the deleted node information is 25

LIST 3 5 18 25 39 45

LIST 3 5 18 39 45

 25

 S.K.B.R.COLLEGE AMALAPURAM

28

 Suppose is x the deleted node information and the List is either Ordered

or Un order Liked List then the algorithm deletes the node by the following Steps.

Algorithm

Step1 Curr  LIST

Step2 Rear  NULL

Step3 While(Curr ! = NULL && Info(Curr) ! = x) do

 {

Step4 Rear  Curr

Step5 Curr  Next(Curr)

 }

Step6 If(Curr = = NULL)

 {

 If(Rear = = NULL)

 Write “List is Empty & We can’t delete a Node ”

 Else

 Write ” The Node does not exist in the List “

 }

 Else

 {

 If(Rear = = NULL)

 {

 Write “ The Deleted Node is First node “

LIST  Next(LIST)

 }

 Else

 {

 Write “ Deleted Node is either Middle or Last Node “

 Next(Rear)  New

 Next(New)  Curr

 }

 Write “ The Deleted Node is Curr “

 }

 In this Algorithm, initially we assign LIST to Curr and Rear to NULL and Rear

Always points to the Curr previous node. Curr begins with first node and search for

deleted node until either Curr gets NULL or Curr information matched with x value by

Step3. Once Step3 process completed, the deleted node pointed by Curr and we delete

that node logically but not permanently. Since, we are only disconnecting the link in

between original Linked List and Curr (deleted node). But Curr (deleted node) still alive

in the memory even we disconnect the link. So it is logically deleted but not permanently.

To be delete permanently we should compulsory use a notation freenode(Curr). This

freenode(Curr) operation can free (for reuse) the node which is pointed by Curr and put

back into available free space Memory. So the Last Step in this Algorithm is

Step7 free(Curr)

 S.K.B.R.COLLEGE AMALAPURAM

29

Avail List :

 The List of available nodes in the Memory is called Avail List. It is a finite pool

of available nodes , these available nodes are existing as a Linked list and it is pointed by

an External pointer called Avail. The Last node in this List is NULL.

Getnode()

 Getnode() supplies a node (empty node) from the Avail List. We can write the

following algorithm to provide a new node

 Step1 If (Avail = = NULL) then

 Write “ Avail List is Empty “

 Else

 {

 P = Avail

 Avail = Next(Avail)

 Return(P)

 }

 Avail

 Avail

 P

Freenode()

 In Linked List, suppose a particular node we want to be deleted, we disconnect

that node link with existing List. This is only logical deletion, but it is not a permanent

deletion. We can delete that node permanently by Freenode(). Because this Freenode()

frees the deleted node and return back to the Avail List. The Algorithm for Freenode() is

 Step1 Next (P) = Avail

 Step2 Avail = P

This Algorithm works pictorially in two steps

1 Avail

 P

2 Avail

 P

 S.K.B.R.COLLEGE AMALAPURAM

30

Implementation of Linked List Using Dynamic Memory Allocation

 In Array implementation of Linked Lists, a fixed number of nodes represented by

an Array are established at the start of execution. Therefore the disadvantage here is we

have to predict the number of nodes when a program is written which is not always

possible. Another disadvantage is that we have to allocate the declared number of nodes

throughout the execution of the program, whereas the program may not be actually using

those many number of nodes.

 The solution is Dynamic allocation of nodes to the program. That is, storage must

be allocated to a program only when it is required, and it must be released, when it is no

longer in use. Now, we will implement the list using Dynamic memory allocation.

 We can implement a list using the concept of pointers in C. A node of Linked list

can be defined as follows.

 struct nodetype

 {

 int info;

 struct nodetype *next;

 };

 typedef struct nodetype N;

 Here, a node consists of an information field and a pointer to the next node in the

list rather than an integer as in the case of Array implementation.

 C has the capability of Dynamically allocating memory space, modifying the

previously allotted memory space and freeing a memory space by the following Memory

Allocation Functions.

Function Task

malloc Allocates requested size of bytes and returns a pointer to the first

byte of the allocated space.

calloc Allocate space for an array of elements, initializes them to zero

and then returns a pointer to the memory.

Free Frees previously allocated space.

realloc Modifies the size of previously allocated space.

Allocating a Block of Memory

 The malloc function reserves a block of memory of specified size and returns a

pointer of type void. This means that we can assign it to any type of pointer. The general

format is

 Ptr = (cast-type *) malloc(byte-size);

Ptr is a pointer of type cast-type. The malloc returns a pointer (of cast-type) to an area

of memory with size byte-size.

Eg:- ptr = (N *) malloc (sizeof(N));

Here N is synonym for struct nodetype, contain two members info (2 bytes) and

next pointer (2 bytes) occupies totally 4 bytes. So 4 bytes reserved by malloc function

and return the first byte address of reserved space to a pointer ptr of type N.

 S.K.B.R.COLLEGE AMALAPURAM

31

The calloc is another memory allocation function that is normally used for

requesting memory space at run time for storing derived data type such as arrays and

structures. While malloc allocates a single block of storage space, calloc allocates

multiple blocks of storage, each of the same size, and then sets all bytes to zero. The

general format is

Ptr = (cast-type *) calloc(n, byte-size);

This function allocates contiguous space for n blocks, each of size byte-size.

Note:-

 If there is not enough memory space by either malloc or calloc function, a NULL

pointer is returned. So, have to check whether the requested memory is allotted or not? by

The following condition:

 if(ptr = = NULL)

 {

 printf(“\n Memory is not allotted”);

 exit(0);

 }

Altering the Size of a Block

 We can change (either increase or decrease) the memory size already allocated

with the help of the function realloc. This process is called the reallocation of memory.

Suppose we allocate the Block of Memory by the following statement.

 Ptr = malloc(sizeof(old-size));

 The general format to increase or decrease the Memory Block is

Ptr = realloc(Ptr,new-size);

This function allocates a new memory space of size new-size to the pointer Ptr

and returns a pointer to the first byte of the new memory block. The new-size may be

larger or smaller than the old-size.

Releasing the Used Space

 When we no longer need the data we stored in a block of memory, and we do not

intend to use that block for storing any other information, we may release that block of

memory for future use, using the free function. The general format is

 free(ptr);

 Where ptr is a pointer to a memory block which has already been created by

malloc or calloc.

We can, therefore, use malloc function in the place of getnode() function and use

free function in the place of freenode() function

 S.K.B.R.COLLEGE AMALAPURAM

32

Header Node

Some times it is desire to keep an extra node at the front of a List. Such a node

doesn’t represent an item in the List and is called a Header Node or a List Header. The

Information field of such Header node might be unused but the Next field maintains the

first node address. More often the information of such a node could be used to keep

Global Information about the Entire List.

Eg:-

 LIST H.N 9 1 12

One of the applications of Header node is the information portion of the Header

node contains the number of nodes (not including Header) in the List. In this Structure

the Header must be adjusted the total number of nodes when we apply addition or

deletion operation on the List. We can directly obtained the total number of nodes

without traversing the entire List.

By using this application, we can develop Data Structure Stack easily. Since

Header node information field maintains the number of elements that the Stack contains.

Another application is we can simply develop the Data Structure Queue. Until

now, two external pointers, Front & Rear, were necessary for a List to represent a

Queue. However, now only a single external pointer is sufficient to maintain a Queue that

is Head node. Because the Header node next field behave like a Front and information

field of Header node maintains last node address so that it is behave like a Rear .

 Front

 LIST H.N 9 1 12

 Rear

 Another possibility for the use of the information portion of a List Header is as a

pointer to a Curr node in the List during a traversal process. This would be eliminate the

node for an external pointer during traversal.

 S.K.B.R.COLLEGE AMALAPURAM

33

CIRCULAR LINKED LIST

In a Circular Linked List, instead of NULL pointer to the Last node of a List, it

contains the address of its First node. In this List, starting from any given node, we can

traverse all nodes merely by chaining throughout the List. When we are traversing a

Circular List, we must be careful, as there is a possibility to get into an infinite loop if we

can’t able to detect the end of the List. To overcome this problem we keep an External

pointer at the starting node and look for this External pointer as a stop sign. Actually,

there is no First or Last node since the Structure is Circular. However, the External

pointer continues to represent the List pointing to the First node.

 LIST 12 3 5 98 1

Advantages:

1. Any node can be visited (traversed) starting from any other node in a List.

2. There is no need of NULL pointer to signal the end of the List and, hence

all pointers contain valid addresses

Disadvantages:

To visit previous node from the current node, we must take one complete cycle.

DOUBLY LINKED LIST

 In a Doubly Linked List, each node contains two pointers (previous & next), one

to its predecessor and another to its successor. i.e. each node contain the address of next

node by next field and also address of previous node by previous field. The previous and

next pointers are often mentioned as prev & next or lpter(left pointer) & rptr(right

pointer) respectively in a Structure definition. The Left pointer of First node and Right

pointer of Last node always NULL.

 In this List we can traverse or search the entire List in both directions (Backward

& Forward). That means, from any node in the List, we can visit any other node in the

List. To reach Last node of the List from any other node, we simply follow the next

pointers. To reach First node of the List from any other node, we follow the previous

pointers.

The Structure Definition is:

 Struct doubly_list

 {

 char info;

 struct doubly_list *lptr;

 struct doubly_list *rptr;

 };

 S.K.B.R.COLLEGE AMALAPURAM

34

The Diagrammatic representation of Doubly Linked List Node is:

 Lptr Info Rptr

 NODE

The Diagrammatic representation of Doubly Linked List

 LIST 9 12 3 15

Advantages:

1. We can traverse the entire List in both directions.

2. In this List, there no need to refer to a key(node to be deleted) by using a

pointer to the previous node at the time of deletion

Disadvantages:

1. When compare to single Linked List, the extra pointer in doubly Linked List

occupies additional space and also increase the maintenance of insertions &

deletions because there are more pointer to adjust.

 S.K.B.R.COLLEGE AMALAPURAM

35

TREES

 A tree is a finite set of one or more nodes such that there is a specially designated

node called the Root. The remaining nodes are partitioned into N >= 0 disjoint sets

T1, T2, … TN, where each of these sets is also a Tree.T1, T2, … TN are called sub trees of

the Root.

A tree is a data Structure in which all the nodes are connected while directed arcs.

A Tree consists of one or more nodes (vertices), which are connected by branches

(edges). Each node can have the data and its associated information. A tree with N nodes

has N-1 branches.

A Tree contains a unique First element known as the Root, which is shown at the

top of the tree Structure.

A node, which points to other nodes in a tree is said to be Parent node. Each node

in a tree pointed by parent is called Children. The root of the tree is a parent of all the

other elements in a tree.

 a Root

 c is Parent

 b b & c are c for both g & h

 Children to a

 d e f g h

In this tree there are 8 nodes, that’s why it contains 7 branches.

 A node may or may not have children. A node, which doesn’t have any child,

called the Leaf or Terminal node. These Leaf nodes are some times known as External

nodes, Non-Terminal nodes are known as Internal nodes.

The child nodes of same parent are said to be Siblings. All these are placed at the

same level. All nodes at a particular level are said to be a same generation.

A node is an ancestor of another node in the tree if it is the parent of that node or

the parent of some other ancestor of that node.

A node is said to be descendent of another node if it is the child of that node or

the child of some other descendent of that node.

 S.K.B.R.COLLEGE AMALAPURAM

36

A path in a Tree is a list of distinct nodes in which successive nodes are

connected by branches in the Tree. The length of a particular path is the number of

branches in that path.

The Degree of a node of a tree is the number of children of that node. The Degree

of Leaves is Zero.

The maximum number of children a node can have is often referred to as the

Order of a Tree. Note that the Degree is referred for a node and Order is referred for

entire Tree.

The height (depth) of a tree is the Maximum level of a Tree.

A sub tree is a sub set of a Tree that is itself a Tree.

A Forest is a set of N >= 0 disjoint Trees. The notation of a forest is very close to

that of a Tree because if we remove the Root of a Tree we get a Forest. For example in

the given Tree if we removed Root node that contain information A then we get a Forest

with 3 Trees B, C, D respectively.

 Level

 A Root 0

 B C D 1

 Siblings

 E Leaf F Leaf G H Leaf I Leaf J 2

 Same Generation

 Siblings

 Leaf K L Leaf M Leaf 3

 S.K.B.R.COLLEGE AMALAPURAM

37

BINARY TREE

A Binary Tree is a tree in which each node has at most two children, a Left child

and a Right child. Thus, the order of Binary Tree is 2.

A Binary Tree is either empty or consists of the following steps

1. A node (called the Root node) and

2. Left and Right Sub trees

Note:- Both the sub trees(left & right) are themselves Binary Trees.

Note:- Binary Trees are not symmetric structures. i.e interchange of Right and Left sub

trees results a new different Binary Tree.

A Binary Tree is called Strictly Binary Tree if every non-leaf node in the Binary

Tree has non-empty Left and Right sub trees.

A Binary Tree is called Complete Binary Tree if every non- leaf node has left and

right sub trees and all these leaves are at the same level.

 S.K.B.R.COLLEGE AMALAPURAM

38

Binary Tree Representation:

A Binary Tree can be represented in two ways.

1. Sequential (Array) representation.

2. Linked (Pointer) representation

Implementation of Binary Trees using Arrays.

We can implement Binary Trees in arrays using one-dimensional array.

a. The Root of Binary Tree is stored in the First location (0th index)

b. If a node is in Jth location (Jth index)of Array then its left child is stored in the

2Jth location (2J +1 index) and its right child is stored in the 2J+1 location

(2J+2 index).

Suppose if a Tree conations a depth D then, the size of the array to store the tree

nodes is equal to 2D+1 –1.

 Level

 A 0

 B C 1

 D E F G 2

 H I J 3

The above Tree depth is 3, So the number of nodes we required is 15

A B C D E F G H I J

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Advantages:

1. No overhead of maintaining any pointers.

2. We can easily identifies the Parent node for a specified child i.e the Parent

is

 located at (children location / 2) area. Here the division is integer division.

Note:- For Indexes, Parent location = (child location – 1) / 2

Disadvantages:

1. Growing and shrinking of a tree can’t efficiently manage.

2. Wastage of Memory, when the array is not properly filled.

 S.K.B.R.COLLEGE AMALAPURAM

39

Linked Representation:

Linked representation of Trees in memory is implemented using pointers. Since

each node in a Binary Tree can have maximum two children, anode in a linked

representation has two pointer fields for both Left and Right child, and one Information

field. If a node does not have any child, the corresponding pointer field is NULL pointer.

The following figure shows the Linked representation

 Root

struct tree_node

 {

 char info;

 struct tree_node *left, *right;

 };

A Binary Tree with N nodes contains N+1 Null Pointers. The above Tree has 10

Nodes, so it contains 11 NULL pointers

Disadvantages:

1. Wasted space due to Null Pointers at all the Leaf nodes.

2. Finding a Parent of a particular node is difficult.

 S.K.B.R.COLLEGE AMALAPURAM

40

Binary Search Tree:

A Binary search tree is a Binary tree, which is either empty or contains a node

whose key satisfies the following conditions:

 1. The key in the Left child of a node (if any) precedes the key in the Parent node.

 2. The key in the Right child of a node (if any) succeeds the key in the Parent node.

 3. The Left and Right sub trees of the Root are again Binary search Trees.

 Note:- The given assumptions are for only non-duplicate values. To

accommodate the duplicate values we can modify the definition so that the key in

the Right child of a node can be greater than or equal to the key in the Parent

node.

Algorithm for search information X in the Binary Search Tree

 P  Root

 While (P != NULL) and (info(P) != X) do

 If (info(P) > X) then

P  Left(P)

 Else

P  Right(P)

 If (P = = NULL) then

 Write “ X is not Present in the Tree.”

 Else

Write “ X is Present in the Tree.”

Traversing of Binary Tree:

 Traversing a Tree means that processing it so that each node is visited exactly

once. A Binary Tree can be traverse in number of ways. The most common three

Traversals are In-Order, Pre-Order and Post-Order.

Recursive Procedures for In-Order, Pre-Order and Post-Order traversals are:

Pre-Order:

 Step1: Visit the Root of a Tree

 Step2: Pre-Order Traverse of Left Sub Tree Data

 Step3: Pre-Order Traverse of Right Sub Tree.

 D

In-Order:

 Step1: In-Order Traverse of Left Sub Tree

 Step2: Visit the Root of a Tree. L R

 Step3: In-Order Traverse of Right Sub Tree.

 Left Right

Post-Order:

 Step1: Post-Order Traverse of Left Sub Tree

 Step2: Post-Order Traverse of Right Sub Tree.

 Step3: Visit the Root of a Tree.

 S.K.B.R.COLLEGE AMALAPURAM

41

In-Order Traverse Pre-Order Traverse Post-Order Traverse

 A

 B C

 D E F G

 H I J

 K

 Sample Binary Tree Pre-Order Traversal Binary Tree

 A, B, D, E, H, C, F, G, I, K, J

 In-Order Traversal Binary Tree Post-Order Traversal Binary Tree

 D, B, H, E, A, F, C, K, I, G, J D, H, E, B, F, K, I, J, G, C, A

 S.K.B.R.COLLEGE AMALAPURAM

42

Algorithm to insert a new node onto Binary Search Tree

Step1: Getnode(New)

Step2. Left(New)  NULL

Step3. Right(New)  NULL

Step4. Info(New)  X

Step5. Curr  Root

Step6. Rear  NULL

Step7. While(Curr != NULL) do

 {

 Rear  Curr

 If (Info(Curr) > X) then

 Curr  Left(Curr)

 Else

 Curr  Right(Curr)

 }

Step8. If (Rear = = NULL) then

 Root  New

 Else

 {

 If (Info(Rear) > X) then

 Left(Rear)  New

 Else

 Right(Rear)  New

 }

 In a Binary Search Tree, the New node will always be inserted at its proper

position in the Binary Search Tree as a Leaf Node. Let us take an empty Binary Search

Tree, and the following diagrams represents the state of Binary Tree when we insert the

data 9, 25, 5, 50, 7, 3, 15 in a sequential order.

 Initially, the Binary Tree State is Root NULL

Root 9 Root 9 Root 9 Root 9

 25 5 25 5 25

 50

Root 9 Root 9 Root 9

 5 25 5 25 5 25

 7 50 3 7 50 3 7 15 50

 S.K.B.R.COLLEGE AMALAPURAM

43

Delete a Node from the Binary Search Tree:

 The method to delete a node depends on the specific position of the node in the

tree. The algorithm to delete a node can be subdivided into 4 different cases.

Case 1:

If the node to be deleted is a Leaf node, we only need to set the appropriate link of

its Parent to Null, and dispose of the node, which is deleted.

 A A

 B C B C

 D E D NULL

 Suppose, the Node to be Deleted is E After Delete the Node E

Case 2:

 If the node to be deleted has only Left child, we need to adjust the Link from the

Parent of the deleted node to point to the Left child of the node we intend to delete. Thus

we can dispose of the deleted node.

 A A A

 B C B C B C

 D E D E D T

 T T

Suppose, the Node to be Deleted is E After Delete the Node E

Case 3:

If the node to be deleted has only Right child, we need to adjust the Link from the

Parent of the deleted node to point to the Right child of the node we intend to delete.

Thus we can dispose of the deleted node.

 A A A

B C B C B C

 D D E

 E E

Suppose, the Node to be Deleted is D After Delete the Node D

 S.K.B.R.COLLEGE AMALAPURAM

44

Case 4:

If the node to be deleted has two children is most complicated problem. We attach

one of the sub trees of the nodes to be deleted to the parent and then hang the other sub

tree onto the appropriate node of the first sub tree. Let us attach right sub tree to the

parent node and then hang the left sub tree onto a proper node of the right sub tree. Since

every key in the left sub tree is less than every key in the right sub tree. Therefore, we

must attach the left sub tree as far to the left as possible. This proper place can be found

by going left until an empty left sub tree is found.

 A A A

 B C B C B C

 D E D E D I

 H I H I L M

 J K L M J K L M O

 N O N O H

 J K

 N

Suppose, the Node to be Deleted is E After Delete the Node E

 Algorithm to delete a Node from the Binary Search Tree

Initialize the traversal pointers

Step1. Curr  Root

Step2. Rear  NULL

Search for the deletion place

Step3. While (Info(Curr) != X && (Curr != NULL))

 {

 Rear  Curr

 If (Info(Curr) > X)

 Curr  Left(Curr)

 Else

Curr  Right (Curr)

 }

Step4. If(Curr = = NULL)

 Write “ We are trying to delete non existing node.”

 Else if (Left(Curr) != NULL && Right(Curr) != NULL)

 {

 Temp  Right (Curr)

 S.K.B.R.COLLEGE AMALAPURAM

45

 while(Left(Temp) != NULL)

 Temp  Left (Temp)

 Left (Temp)  Left(Curr)

 Connect  Right(Curr)

 }

 Else if (Left(Curr) = = NULL && Right(Curr) = = NULL)

 {

 Connect  NULL

 }

 Else if (Left(Curr) != NULL && Right(Curr) = = NULL)

 {

 Connect  Left (Curr)

 }

 Else

 {

 connect  Right (Curr)

 }

Step5. If (Rear = = NULL)

Root  Connect

 Else if (Info(Rear) > Info(Curr))

 Left(Rear)  Connect

 Else

 Right(Rear)  Connect

Step6. Freenode(Curr)

Treaded Binary Tree

To traverse a tree in a particular order, we have to know how to access the next

node in that order. Moreover, we have seen that the linked representation of Binary Tree

has a drawback of having NULL pointers at several nodes. This space can be utilized

efficiently by replacing the values with threads. Threads are nothing but pointers which

contain some additional useful information.

Generally, the threading of a Binary Tree corresponds to a particular traversal

order. For example, for In-Order traversal of a threaded tree, if the right pointer of a node

was originally NULL, now it points to the In-Order successor of that node in the tree.

Similarly, if the left pointer of the node was originally NULL, it now points to In-Order

predecessor of that node. However the left pointer of first node and right pointer of last

node will contain the NULL value.

Trees can also have a special node, called header node, as we have seen with

Linked Lists. That is, in a tree which has header node, the pointer ROOT points to

header node rather than the Root node. If a header node is there in a threaded binary tree,

the left pointer of first node and right pointer of last node, with respect to In-Order

 S.K.B.R.COLLEGE AMALAPURAM

46

traversal. The following diagram represents the Threaded Binary Tree. Threads are

generally indicated by dotted lines.

 ROOT

 A

 B C

 D E F G

 H I J

 K

 S.K.B.R.COLLEGE AMALAPURAM

47

GRAPH THEORY

 A graph G = (V , E) consists of a non-empty set, V called the set of nodes or

vertices or points and a set of edges E in which each edge is associated to an ordered pair

of nodes or unordered pair of nodes.

Eg:- 1 Eg:- 2 Eg:- 3

 e1

 e2

Ordered Pair of Nodes:

 A pair of nodes u and v in a graph is called an ordered pair of nodes if u

is connected to v with some directions. Ordered pair of nodes is denoted by < u ,v >

 u v

Unordered Pair of Nodes:

 A pair of nodes in a graph u and v is called unordered pair of nodes if u is

connected to v and without any direction. These are denoted by (u , v)

 u v

Adjacent nodes:

A pair of nodes in a graph which are connected by an edge are called adjacent

nodes.

 v3

 v1 v2 v1 v2

 v1 v2

Insolated Node:

 A node in a graph, which is not connected any one of the other nodes is called an

isolated node.

 a b

 x y

 . c d

 In this graph, x & y are Isolated Nodes In this graph, b is Isolated Node.

Directed edge:

 An edge in a graph is called a directed edge if it is associated to a pair of ordered

nodes. e

 v1 v2 Here, e is directed edge

 S.K.B.R.COLLEGE AMALAPURAM

48

Undirected edge:

 An edge in a graph is called undirected edge if it is associated to unordered pair of

nodes. e

 v1 v2 Here, e is undirected edge

Directed graph:

 A graph in which every edge is a directed edge is called a directed Graph.

Undirected graph:

 A graph is called undirected if each edge is not a direct edge.

Mixed Graph:

 A graph in which some edges are directed and some edges are undirected is called

a mixed graph.

Consisting only one-way street in a map of a city is called directed graph. In a

Map of a city consisting of two- way streets only is called an un-directed graph. In a Map

of a city consisting of two- way and one- way streets is called Mixed Graph.

Incident:

 In a graph if an edge e is associated to an ordered or unordered pair of nodes u

and v then we say that the e is incident with u and v.

 e e

 v1 v2 v1 v2

Loop or Sling:

In a graph an edge connecting a node to it self is called a loop or sling.

 v1 v2

Initiating or originating Node:
In a Dia-graph a node at which an edge starts or begins is called initiating or

originating node.

v1 v2 Here, v1 is initiating node

 S.K.B.R.COLLEGE AMALAPURAM

49

Terminating Node:

In a Dia-graph a node at which an edge ends is called terminating node.

v1 v2 Here, v2 is terminating node

Distinct Edges:
 In a diagraph if two nodes are connected in two opposite directions the

corresponding edges are called distinct nodes.

Parallel edges:

 In a graph if two edges are associated to the some ordered or unordered pair of

nodes then those edges are called parallel edges.

Multi graph:

 A graph is called a multi graph if it contains some parallel edges.

Simple Graph:

 If in a graph there is no more than one edge between any pair of nodes we say that

the graph is a simple graph.

Weighted Graph:

 A graph in which weights are assigned to each edge is called a weighted graph.

 e1 weight is 5

 5 e1 e2 9

 e2 weight is 9

 e3 1 e3 weight is 1

Eg1. A graph representing a system of pipelines in which the weights are assigned

indicates the amount of some commodity transferred through the pipe is an example for a

weighted graph.

Eg2. Map of a city in which each street is assigned weights according to the traffic to

the density is weighted graph.

 S.K.B.R.COLLEGE AMALAPURAM

50

Degree of a Node:

 Number of edges, which are incident to a node and self - loop counted twice is

called a degree of a node.

 a Degree of node a is 4

 Degree of node b is 2

 b c Degree of node c is 2

 a

 Degree of node a is 4

 Degree of node b is 2

 Degree of node c is 3

 b d Degree of node d is 2

 c

Out Degree of a Node:

 The no. of edges originating at a node in a Dia-graph is called the out-degree of

that node.

 a

b c

 d

 In this graph, a out-degree is 1 , b out-degree is 3

 c out-degree is 1 , d out-degree is 0

In Degree of a Node:

 The no. of edges terminating at a node in a Dia-graph is called the in-degree of

that node

 A In this graph, a in-degree is 1 , b in-degree is 0

 c in-degree is 2 , d in-degree is 2

 b c

 d

Path in an undirected graph:

 Path in an undirected graph is a sequence of edges in which any two successive

edges have a common node.

 v1 e1 v2 e1, e2 and e3 is a path.

 e5 e1, e2, e3 and e4 is a path.

 e4 e2

 e1 and e5 is a path.

 v3 e3 v4

 S.K.B.R.COLLEGE AMALAPURAM

51

Simple Path:

 A path in a graph is called a Node Simple if it travels to distinct nodes.

 v3

 v1 v2

Path in a diagraph:

 In a diagraph path is a sequence of edges in which terminal node of an edge e is

same as initial node of its successive edge. e1, e2, e3, e4 and e5 is a path.

 v6 v1 e1

 e5

 e6

 v5 v2

 e4 e2

 v4 e3 v3

Length of a Path:

 In a directed or undirected graph the length of a path is the no. of edges in a path.

For example the length of the path from node v3 to node v6 is 3.

Edge Simple:

 A path is called an edge simple if all the edges in the path are distinct.

Complete undirected graph:

 An undirected graph is said to be complete if there is an edge common to each

pair of nodes.

 v3

 v3

 v1 v2 v1 v2

 Complete Graph Un complete Graph

Complete Diagraph:

 A diagraph is said to be complete if there is an edge common to each pair of

nodes. A diagraph is complete if there us an edge from u to v for each pair < u , v >

 Un complete Graph Complete Graph

 S.K.B.R.COLLEGE AMALAPURAM

52

Graphs Representation

 To represent a graph we have to represent two things: nodes and edges. Graphs

are generally represented either in sequential representation or linked representation.

Sequential representation uses a two-dimensional array where as linked representation

uses a linked list. We refer graph means directed graphs unless specified otherwise.

Sequential Representation
 A graph is conveniently represented by a matrix (two-dimensional array) called

adjacency matrix(or incidence matrix). A graph containing n nodes can be represented by

a matrix containing n rows and n columns.

Adjacency matrix

 The Adjacency matrix A of graph G =(V, E) with n nodes is an n x n matrix such that:

Aij = 1 if there is an edge between vi and vj , otherwise Aij = 0

 Essentially adjacency matrix represents which vertices are adjacent, or rather,

which two vertices have an edge. For example, the given bellow figure shows directed

graph and its adjacency matrix.

 A B C D

 A B

 A 0 0 1 0

 B 1 0 0 1

 C 0 1 0 1

 C D D 1 0 1 0

 Each position of adjacency matrix represents whether one node is connected to

another (value 1 or true) or not (value 0 or false). Note that it encodes the direction of the

edges. For example, in adjacency matrix there is 1 in row B, column A, since there is an

edge from B to A. But there is no edge in the reverse direction from row A to column B,

so that in adjacency matrix the correspondent position (row A , column B) contains 0.

 Note that if a matrix contains only 0s and 1s then it is called bit matrix or Boolean

matrix. The total number of 1s in the matrix represents the total number of edges in that

directed graph.

 The adjacency matrix for a undirected graph is a symmetric matrix. Because an

edge (A, B) means that both (A, B) and (B, A).

An adjacency matrix has certain disadvantages:

(a) Graphs with few edges would have a lot of wasteful zeroes in the adjacency

matrix. That is, the corresponding adjacency matrix is sparse.

(b) Insertion and deletion of nodes is difficult

 S.K.B.R.COLLEGE AMALAPURAM

53

Linked Representation

 The linked representation, using linked lists, maintain two kinds of lists:

1 A NODE LIST and

2 An EDGE LIST.

NODE LIST

 In Node List, each node corresponds to a node in Graph G, and it contains the

following three fields:

(a) NODE – contains the value of the node in the graph

(b) NEXT - contains a pointer that points to next node in the node list and

(c) ADJACENT - contains pointer that points to the first node of adjacency list of

the node

Each node in the node list can have other fields, which may contain the

information associated with the node.

EDGE LIST
 In Edge List, each node corresponds to an edge of graph G. A node in the

edge list contain two fields:

(a) TERMINAL – contains a node that is an adjacent node to a node in the

 NODE LIST
(a) PTR – contains a pointer that points to next node in the adjacency list, which

are all initiated from same node in the graph.

Like node list, edge list also may have any other information. One such important

field is the weight field, if an edge is associated with weight. In the adjacency list

representation, each edge appears in two lists and thus the space usage essentially

doubles.

 A B

 NODE LIST EDGE LIST

A B

 C D

B D C

C A D

D A B

Graph Traversal

 Traversal of a graph means that systematically visiting all nodes exactly

once in the graph. The two important traversal methods are breadth-first search

and depth-first search. The graph traversal start at an arbitrary vertex since there

is no node as special. Assume that each node in a graph will be in one of three

states while traversing the graph: ready state, waiting state, visited state.

 S.K.B.R.COLLEGE AMALAPURAM

54

Breadth-First Traversal

 This strategy is much similar to level-by-level traversal of an ordered tree.

Breadth-first search operates by processing nodes in layers. The breadth-first

search can begin at any arbitrary node. The nodes, which are adjacent to the start

node, are processed first, and proceeds to adjacent nodes of that nodes just visited.

This process starts until all the nodes are visited. Here, if the traversal just visited

a node A, then it next visits all the nodes adjacent to A, keeping the nodes

adjacent to these in waiting list to be traversed after all nodes adjacent to A have

been visited.

 A data structure Queue is used to place all waiting nodes. This queue is

also convenient to keep the track of nodes that are already visited, so that, a node

is visited only once.

 The general Breadth-first traversal algorithm is as follows:

Step1. All nodes are initialized as ready state and initialize Queue to empty

Step2. Begin with any node, which is in ready state and put into Queue. Mark the

status of that node to waiting.

Step3. While Queue is not empty do

 {

Step3.1. Delete the first node K from Queue and process it. Mark the status

of that node to visited.

Step 3.2. Add all the adjacent nodes of K, which are in ready state to the rear

 side of the Queue and mark the status of those nodes to waiting.

 }

Step4. If the graph still contains nodes, which are in ready state then go to step2.

Step5. Return

The step6 in the above algorithm handle those nodes, which does not have

a path from starting node to them.

 1 4 6 1

 A B C A

 2 3 7 2 3 4

 D E F B C D

 5 8 9 5 6 7 8 9 10

 G H I E F G H I J

The above diagrams show the visiting nodes in BFS. Numbers on the nodes

indicates the sequence of nodes visited in BFS.

 S.K.B.R.COLLEGE AMALAPURAM

55

Depth-first Traversal

 The depth-first traversal of a graph is much similar to preorder traversal of

an ordered tree. The traversal of a graph start at any arbitrary node, say A.

Suppose B, C, D and E be the nodes adjacent to A. Then, we will next visit B and

keep C, D and E waiting. After visiting B, we traverse all the vertices to which it

is adjacent before returning to traverse C, D and E.

 In the depth-first traversal, we backtrack on a path once it reached the end

of that path. We consider the data structure Stack instead of a queue as in breadth

first traversal.

The general Depth-first traversal algorithm is as follows:

Step1. All nodes are initialized as ready state and initialize Stack to empty

Step2. Begin with any node, which is in ready state and push into Stack. Mark the

status of that node to waiting.

Step3. While Stack is not empty do

 {

Step3.1. Pop the top node K from Stack and process it. Mark the status of

 that node to visited.

Step 3.2. Push all the adjacent nodes of K, which are in ready state in to the

the Stack and mark the status of those nodes to waiting.

 }

Step4. If the graph still contains nodes, which are in ready state then go to step2.

Step5. Return

Note that, the depth-first traversal continues progressively deeper (downwards) in

a recursive manner.

 1 7 8 1

 A B C A

 2 9 6 2 5 7

 D E F B C D

 3 4 5 3 4 6 8 9 10

 G H I E F G H I J

The above diagrams show the visiting nodes in BFS. Numbers on the nodes

indicates the sequence of nodes visited in BFS.

 S.K.B.R.COLLEGE AMALAPURAM

56

Spanning Tree

 There is a common problem associated with weighted graphs, that of finding a

minimal spanning tree for each connected component.

A spanning tree for an undirected graph G is a graph T consisting of the nodes of G

together with enough from G such that:

1. There is a path between each pair of nodes in T.

2. There are no simple cycles in T.

It should be clear that if G is connected if and only if there is spanning tree for G.

Thus, there is a spanning tree for every connected component of a graph.

If a graph G = (V, E) contain N nodes, then the spanning tree for that graph

contains N-1 edges. The edges of spanning tree are subset of E.

 In general, it is possible to construct different spanning trees for a graph, G. For

example, the given bellow Figure I is a tree and Figure II shows the possible spanning

trees of graph shown in Figure I.

 Figure II

 Figure I

For any spanning tree we could pick any node as the root and that would provide

a parent-child relationship for the nodes connected by each edge.

A minimal spanning tree for a weighted graph G is a spanning tree such that the

sum of its weights is less than or equal to the sum of the weights of every other spanning

tree for G. That is in a minimal spanning tree the sum of weights of the edges is as small

as possible.

